
# General and Modular Synthesis of Isomeric 5-Substituted Pyridin-2-yl and 6-Substituted Pyridin-3-yl C-Ribonucleosides Bearing Diverse Alkyl, Aryl, Hetaryl, Amino, Carbamoyl, and Hydroxy Groups

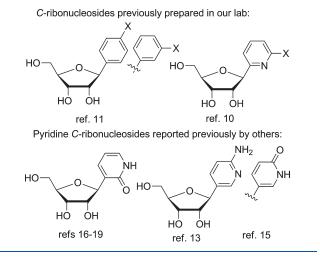
Martin Štefko, Lenka Slavětínská, Blanka Klepetářová, and Michal Hocek\*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic.

Supporting Information

**ABSTRACT:** A general modular and practical methodology for preparation of diverse 5-substituted pyridin-2-yl and 6-substituted pyridin-3-yl *C*-ribonucleosides was developed. Regiose-lective lithiation of 2,5-dibromopyridine proceeded at position 5 or 2 depending on the solvent, and the resulting bromopyridyl lithium species underwent additions to TBS-protected ribono-lactone and follow-up transformations to corresponding acety-



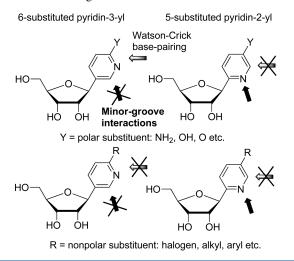

lated hemiketal intermediates 7 and **10** that were diastereoselectively reduced to give either 5-bromopyridin-2-yl or 6-bromopyridin-3-yl silyl-protected *C*-ribonucleosides **8** or **11** in 68% and 77% overall yields as pure  $\beta$ -anomers. These bromopyridyl *C*-nucleoside intermediates were then subjected to a series of palladium-catalyzed cross-coupling reactions, aminations, aminocarbonylations, and hydroxylations to give a series of protected 1 $\beta$ -(5-alkyl-, 5-aryl-, 5-amino-, 5-carbamoyl-, and 5-hydroxypyridin-2-yl)-*C*-ribonucleosides **13a**-**i** and  $\beta$ -(6-alkyl-, 6-aryl-, 6-amino-, 6-carbamoyl-, and 6-hydroxypyridin-3-yl)-*C*-ribonucleosides **15a**-**i**. Deprotection of silylated nucleosides by Et<sub>3</sub>N·3HF, TBAF, or TFA gave a series of free *C*-nucleosides **14a**-**i** and **16a**-**i**.

## INTRODUCTION

The syntheses, as well as the importance, biological activities, and other applications of C-nucleosides as hydrolytically stable analogues of natural N-nucleosides were thoroughly discussed and summarized in several recent reviews.<sup>1</sup> Our group is interested in development of general and modular methods of synthesis of diverse substituted (het)aryl-C-nucleosides. Our approach is based on synthesis of halo(het)aryl-C-nucleoside intermediates and their follow-up derivatizations by means of cross-coupling reactions, Hartwig-Buchwald aminations, aminocarbonylations,<sup>2</sup> and hydroxylations.<sup>3</sup> In this way, we have prepared 3- and 4-substituted benzene,<sup>4</sup> 6-substituted pyridin-2-yl<sup>5</sup> and pyridin-3-yl,<sup>6</sup> 5-substituted thiophen-2-yl,<sup>7</sup> 5-substituted furan-2-yl,<sup>8</sup> and 2,4-disubstituted pyrimidin-5-yl<sup>9</sup> C-2'-deoxyribonucleosides some of which were used for chemical biology studies on DNA polymerases and primases.<sup>10</sup> In the ribonucleoside series, we reported only the synthesis of benzene<sup>11,2,3</sup> and 6-substituted pyridin-2-yl<sup>12</sup> derivatives so far (Chart 1).

Some other types of pyridine *C*-ribonucleosides have been reported and applied in diverse areas (Chart 1). 2-Aminopyridin-5-yl *C*-ribonucleosides were prepared<sup>13</sup> as deletion analogues of cytidine for probing the function of cytosine in ribozymes, and the corresponding 2'-deoxyribonucleosides were used<sup>14</sup> for synthesis of triplex-forming oligonucleotides (ONs). 2-Oxopyridin-5-yl *C*-ribonucleosides served<sup>15</sup> as deletion analogues of uridine for prospective RNA studies. 2-Oxopyridin-3-yl *C*-ribonucleosides<sup>16</sup> selectively pair with 6-substituted-2-aminopurines<sup>17</sup> and were used

#### Chart 1. Selected Known C-Ribonucleosides




in extension of the genetic alphabet for transcription to synthetize modified RNA<sup>18</sup> and to construct proteins containing unnatural amino acids.<sup>19</sup> 5-Carbamoylpyridin-2-yl *C*-ribonucleoside was prepared<sup>20</sup> as a nicotinamide ribonucleoside analogue. Isomeric 6-substituted pyridin-3-yl *C*-ribonucleosides occur<sup>21</sup> only very scarcely in the literature. In all the above-mentioned cases, each single

 Received:
 May 10, 2011

 Published:
 July 08, 2011

Chart 2. Pyridine C-Nucleosides from This Work and Their Possible H-Bonding Interactions

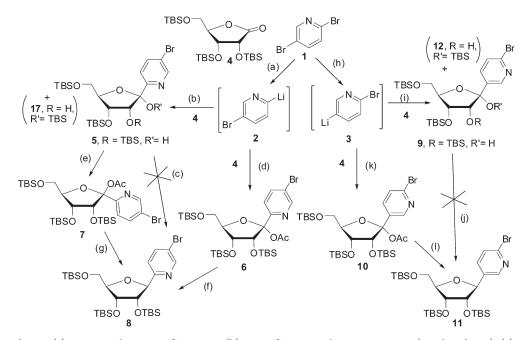


derivative was prepared by a specific multistep sequence involving *C*-glycosidation reaction with a protected functionalized pyridine organometallic reagent.

To complement the series of isomeric pyridine *C*-ribonucleosides, we report here on a general synthesis of two important underexplored types of analogues: 5-substituted pyridin-2-yl and 6-substituted pyridin-3-yl *C*-ribonucleosides (Chart 2). The former type bearing polar substituents (NH<sub>2</sub>, O) should retain H-bonding ability to form Watson–Crick pairs but lacks functionality for minor-groove interactions, whereas the derivatives bearing nonpolar substituents (halogen, methyl, etc.) are shape mimetics of the natural pyrimidines lacking any H-donors. The latter type contains an H-acceptor in the minor groove but the H-bonding at the Watson–Crick is altered. Therefore, these compounds have great potential in studying mechanism of incorporation by RNA polymerases and as building blocks for construction of modified RNAs.

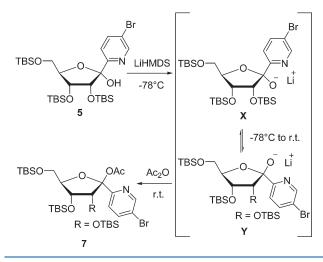
## RESULTS AND DISCUSSION

The key intermediates for the two classes of target C-nucleosides were the corresponding suitably protected 5-bromopyridin-2-yl and 6-bromopyridin-3-yl C-ribonucleosides. The synthesis of both of them was based on known<sup>22</sup> dichotomy in regioselective lithiation of 2,5-dibromopyridine 1. In toluene, a debromolithiation proceeds<sup>22</sup> at position 2 leading to 5-bromo-2lithiopyridine 2, whereas in  $Et_2O$  at position 5 to furnish 2-bromo-5-lithiopyridine 3 (Scheme 1). Thus, the lithiation of 1 with *n*BuLi in toluene for 30 min at -78 °C selectively formed 2 which was immediately reacted with TBS-protected lactone 4 (0.5 equiv) for 10 min to afford the corresponding hemiketal 5 as a pure  $\alpha$ -anomer in poor 24% yield accompanied by a sideproduct 17 (12%) formed by a migration of TBS group from 2'-OH to the hemiketal OH. In order to achieve complete conversion of the starting lactone 4 and suppress formation of the undesired 17, an extensive optimization was required. The optimized conditions used 6 equiv of 1 (for lithiation to 2), resulting in complete conversion of lactone 4 within 10 min Subsequent quenching with MeOH at -78 °C and aqueous


workup gave the desired hemiketal **5** in very good 73% yield as a pure  $\alpha$ -anomer (17 was formed in less than 2%). Then we turned our attention to reduction of **5** under standard conditions using Et<sub>3</sub>SiH/BF<sub>3</sub>·Et<sub>2</sub>O, but all attempts to perform this reduction failed and only unreacted starting material was isolated. Therefore, in analogy to previous works of others<sup>15,23</sup> and us,<sup>12</sup> we tried to convert the hemiketal **5** to its *O*-acetate **6** which should be more reactive toward the reduction. Thus, the hemiketal alkoxide, generated by addition of monolithiated pyridine **2** to lactone **4** was directly in situ acylated on treatment with Ac<sub>2</sub>O to give the hemiketal-acetate **6** in low yield of 18% accompanied by hemiketal **5** (51%).

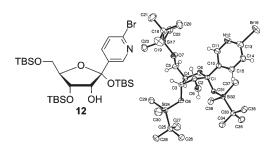
As an alternative, we focused on acetylations of isolated pure hemiketal 5. Its acylations with Ac<sub>2</sub>O or AcCl in the presence of catalytic amount of DMAP in pyridine were tested, but only very low conversions ( $\sim$ 5%) to 6 were observed. However, the treatment of 5 with LiHMDS at room temperature followed by addition of Ac<sub>2</sub>O led to the formation of unexpected opposite  $\beta$ anomer hemiketal-acetate 7 in 30%. It seems that  $\alpha$ -alkoxide X, generated by deprotonation of  $\alpha$ -hemiacetal 5, is at room temperature transformed to thermodynamically more stable  $\beta$ -anomer Y which upon quenching with Ac<sub>2</sub>O gives acetal 7 (Scheme 2). In order to increase the yield of 7, an optimized protocol using 4.5 equiv of the LiHMDS, added to 5 in three portions, was developed. Addition of each portion was followed by quenching with  $Ac_2O$  (1.5 equiv). This methodology was efficient even on a large-scale synthesis, yielding acylated hemiketal 7 in 84% yield. The reductive deacetylation of  $\alpha$ -acetal 6 under standard conditions (3 equiv of Et<sub>3</sub>SiH and 1.5 equiv of  $BF_3 \cdot Et_2O$  at 0 °C) gave the desired 5-bromopyridin-2-yl C-ribonucleoside 8 in 79% yield as a pure  $\beta$ -anomer. Interestingly, the reduction of the epimeric  $\beta$ -acetal 7 under the same conditions proceeded with inversion of configuration at C-1' to furnish 8 in 81% yield as a single diastereomer. The stereochemistry of all nucleosides 5-8 was verified by ROESY spectra.

For the synthesis of 6-substituted pyridin-3-yl C-ribonucleosides, we adopted an analogous synthetic strategy using the lithiation of 2,5-dibromopyridine 1 at position 5 (Scheme 1, h–j). Thus, the lithiation of 1 in diethyl ether at -78 °C using *n*BuLi resulted in selective formation of 2-bromo-5-lithiopyridine 3 which upon coupling with lactone 4 furnished hemiketal 9 in 51% yield (only the  $\alpha$ -anomer was formed) and side-product 12 (12% yield) formed by migration of TBS-protecting group from 2'-OH to hemiketal. In order to achieve complete consumption of lactone 4, 5 equiv of pyridine 1 had to be used. Structure of compound 12 was proved by X-ray structure analysis (Figure 1). To suppress the formation of undesired 12, quenching of the reaction mixture with MeOH at -78 °C was found to be very efficient giving the desired hemiketal 9 in very good 75% yield with only a trace amount of 12 (>2%).


Reduction of 9 under standard conditions (3 equiv of  $Et_3SiH$ , 1.5 equiv of  $BF_3 \cdot Et_2O$  at 0 °C) failed similarly to the reduction of 5. Again, we relied on acetylation of the hemiketal to increase the reactivity toward the reduction. Thus, the addition of 5-lithio-2bromopyridine 3 to lactone 4 at -78 °C followed by direct in situ quenching with Ac<sub>2</sub>O gave a mixture of acylated ketal 10 and hemiketal 9 in 54% and 11% yield, respectively. Unreacted hemiketal 9 could be transformed to 10 upon reaction with LiHMDS at -78 °C followed by quenching with A<sub>2</sub>O in 80% yield. It is noteworthy to mention that in this case, no inversion of anomeric configuration was observed at -78 °C (in contrast to analogous acetylation of 5, vide supra). Subsequent reduction of

## Scheme 1<sup>*a*</sup>




<sup>*a*</sup> Reagents and conditions: (a) 1, *n*BuLi, toluene,  $-78 \degree C$ , 30 min; (b) 4,  $-78 \degree C$ , 10 min then MeOH gives 5 (73% based on 4); (c) Et<sub>3</sub>SiH, BF<sub>3</sub>· Et<sub>2</sub>O, DCM, 0 °C, 10 min, 0%; (d) 4,  $-78 \degree C$ , 10 min then Ac<sub>2</sub>O,  $-78 \degree C \rightarrow r.t.$  gives 6 (18% based on 4); (e) LiHMDS then Ac<sub>2</sub>O, toluene, r.t. gives 7 (84% from 4); (f) Et<sub>3</sub>SiH, BF<sub>3</sub>· Et<sub>2</sub>O, DCM, 0 °C, 10 min gives 8 (81% from 7); (g) Et<sub>3</sub>SiH, BF<sub>3</sub>· Et<sub>2</sub>O, DCM, 0 °C, 10 min gives 8 (79% from 6); (h) 1, Et<sub>2</sub>O, *n*BuLi,  $-78 \degree C$ , 30 min; (i) 4,  $-78 \degree C$ , 10 min then MeOH gives 9 (75% based on 4); (j) Et<sub>3</sub>SiH, BF<sub>3</sub>· Et<sub>2</sub>O, DCM, 0 °C, 10 min 0%; (k) 4,  $-78 \degree C$ , 10 min then Ac<sub>2</sub>O gives 10 (77% based on 4); (l) Et<sub>3</sub>SiH, BF<sub>3</sub>· Et<sub>2</sub>O, DCM,  $-10 \degree C$ , 5 min gives 11 (71% from 10).

Scheme 2. Synthesis of Acylated Hemiketal 7: Proposed Mechanism of Inversion at the Anomeric Carbon



**10** by Et<sub>3</sub>SiH (3 equiv) in the presence of BF<sub>3</sub>·Et<sub>2</sub>O (1.5 equiv) at -10 °C furnished the desired TBS-protected 6-bromopyridin-3-yl *C*-ribonucleoside **11** in 71% yield as a pure  $\beta$ -anomer.

This stepwise synthetic sequence was quite laborious, requiring isolation of each intermediate, and gave the desired *C*-ribonucleoside intermediate **11** in 54% overall yield based on lactone **4**. In order to increase the overall yield and simplify the isolation process we have further optimized the whole synthetic sequence. Thus, the lithiation of pyridine **1** (5 equiv to **4**) followed by coupling with lactone **4** and quenching with  $Ac_2O$  gave a crude mixture of compounds **9** and **10**. Subsequent addition of



**Figure 1.** Chemical and X-ray structure of the side-product **12**. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms on TBS groups were omitted for clarity.

LiHMDS to the crude reaction mixture at -78 °C followed by quenching with another portion of Ac<sub>2</sub>O and workup afforded crude hemiketal **10**. This was directly, without purification, used in final reduction step, yielding after silica gel column chromatography the desired bromopyridine *C*-ribonucleoside **11** as a pure  $\beta$ -anomer in very good 77% overall yield based on lactone **4**.

With the key intermediates **8** and **11** in hand, we turned our attention to palladium-catalyzed cross-couplings, aminations, aminocarbonylations, and hydroxylations (Scheme 3, Table 1, Scheme 4, Table 2). Coupling of **8** with trimethylaluminium under standard conditions using  $Pd(PPh_3)_4$  in THF at 65 °C gives 5-methylpyridin-2-yl C-ribonucleoside **13a** in 90% yield (Scheme 2, Table 1, entry 1). 5-Phenylpyridin-2-yl C-ribonucleoside **13b** was prepared by Suzuki–Miyaura cross-coupling of phenylboronic with **8** in toluene at 100 °C under catalysis of  $Pd(PPh_3)_4$  and  $K_2CO_3$  in 89% yield (entry 2). In order to introduce hetaryl substituents, the Stille cross-coupling reactions using  $PdCl_2(PPh_3)_2$  in DMF were used. Reactions of **8** with

## Scheme 3. Synthesis of a Series of 5-Substituted Pyridin-2-yl C-Ribonucleosides

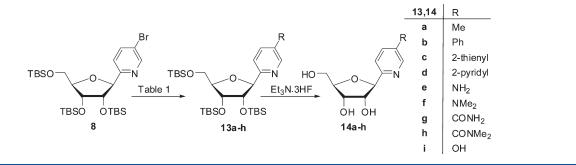



 Table 1. Functional Group Transformations of 8 Followed by Deprotection

| entry    | reagent                                            | catalyst                         | ligand/Base                                            | solvent                  | other conditions | reaction (yield)     | deprotection (yield) |
|----------|----------------------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------|------------------|----------------------|----------------------|
| 1        | Me <sub>3</sub> Al                                 | $Pd(PPh_3)_4$                    |                                                        | THF                      | 12 h, 65 °C      | 13a (90%)            | 14a (83%)            |
| 2        | $PhB(OH)_2^a$                                      | $Pd(PPh_3)_4$                    | K <sub>2</sub> CO <sub>3</sub>                         | toluene                  | 3 h, 100 °C      | 13b (89%)            | 14b (80%)            |
| 3        | 2-Bu <sub>3</sub> Sn- thiophene <sup>b</sup>       | $Pd(PPh_3)_2Cl_2$                |                                                        | DMF                      | 2 h, 100 °C      | 13c (84%)            | 14c (83%)            |
| 4        | 2-Bu <sub>3</sub> Sn- Pyridine <sup>c</sup>        | $Pd(PPh_3)_2Cl_2$                |                                                        | DMF                      | 1.5 h, 100 °C    | 13d (63%)            | 14d (83%)            |
| 5        | $LiN(SiMe_3)_2$                                    | Pd <sub>2</sub> dba <sub>3</sub> | $P^tBu_3 \cdot HBF_4$                                  | THF                      | 11 h 50 °C       | 13e (63%)            | 14e (75%)            |
| 6        | Me <sub>2</sub> NH <sup>d</sup>                    | Pd <sub>2</sub> dba <sub>3</sub> | JohnPhos <sup>e</sup> /tBuONa                          | toluene                  | 3 h 60 °C        | 13f (70%)            | 14f (76%)            |
| 7        | $\mathrm{NH}_{3}^{f}\mathrm{CO}_{(1 \text{ atm})}$ | $Pd(OAc)_2$                      | Xantphos <sup>g</sup> / K <sub>3</sub> PO <sub>4</sub> | toluene                  | 6 h, 80 °C       | 13g (74%)            | 14g (75%)            |
| 8        | Me2NH+HCl CO(1 atm)                                | $Pd(OAc)_2$                      | Xantphos <sup>g</sup> / K <sub>3</sub> PO <sub>4</sub> | toluene                  | 1.5 h, 80 °C     | 13h (80%)            | 14h (81%)            |
| 9        | КОН                                                | Pd <sub>2</sub> dba <sub>3</sub> | $L^h$                                                  | dioxane/H <sub>2</sub> O | 1.5 h 80 °C      | 13i (73%)            | 14i (74%)            |
| a DI D/O | · · · · · ·                                        | 1 han a 1                        |                                                        | 1.1.1                    |                  | $2(\cdot 1 \cdot 1)$ | 1) . I. da           |

<sup>*a*</sup> PhB(OH)<sub>2</sub> = phenylboronic acid . <sup>*b*</sup> 2-Bu<sub>3</sub>Sn-thiophene = 2-(tributylstannyl)thiophene. <sup>*c*</sup> 2-Bu<sub>3</sub>Sn-pyridine = 2-(tributylstannyl)pyridine. <sup>*d*</sup> 2 M solution in THF. <sup>*c*</sup> JohnPhos = (2-biphenyl)di-*tert*-butylphosphane. <sup>*f*</sup> 0.5 M in 1,4-dioxane. <sup>*g*</sup> Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethyl-xanthene. <sup>*h*</sup> L = di-*tert*-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl.

2-thienvl(tributyl)stannane proceeded very smoothly within 2 h at 100 °C to give the desired 5-(2-thienyl)pyridine 13c in 84% yield (entry 3). Reaction of 8 with 2-pyridyl(tributyl)stannane (entry 4) required only 1.5 h to reach complete conversion and the target 5,2'-bipyridine-2-yl C-ribonucleoside 13d was isolated in 63% yield (entry 4). Palladium-catalyzed amination reactions (Hartwig-Buchwald)<sup>24</sup> were used for the synthesis of primary and tertiary amines. Primary aminopyridine derivate 13e was prepared by reaction of 8 with lithium bis(trimethylsilyl)amide (LiHMDS) in the presence of Pd<sub>2</sub>dba<sub>3</sub> and Buchwald-type biaryl-ligand. When (2-biphenyl)dicyclohexylphosphane (cHex JohnPhos)<sup>25,26</sup> was employed as a ligand, no reaction occurred even after long reaction time of 48 h at 50 °C. Only the use of tri-tert-butylphosphane (generated in situ from tri-tert-butylphosphonium tetrafluoroborate) gave the target 5-aminopyridine C-ribonucleoside 13e in acceptable 63% yield after prolonged reaction time (11 h) at 50 °C (entry 5). The dimethylamino group was introduced by the reaction of 8 with dimethylamine (2 M solution in THF) in a sealed tube in the presence of Pd<sub>2</sub>dba<sub>3</sub>, 2-(di-tert-butylphosphanyl)biphenyl (JohnPhos), and *t*BuONa. A short reaction time of 3 h (60 °C) was sufficient to give dimethylaminopyridine C-ribonucleoside 13f in very good 70% yield (entry 6).

Primary and tertiary carboxamides 13g and 13h were prepared by Pd-catalyzed aminocarbonylation<sup>2</sup> reactions in the presence of Pd(OAc)<sub>2</sub>, Xantphos, and K<sub>3</sub>PO<sub>4</sub>. Reaction of ammonium chloride (NH<sub>4</sub>Cl) with 8 in the presence of 5 mol % Pd(OAc)<sub>2</sub> and 10 mol % of Xantphos gives amide 13g in 50% after a short reaction time (1.5 h) at 80 °C. When 0.5 M THF solution of ammonia was used instead of NH<sub>4</sub>Cl, primary amide 13g was isolated in improved 74% yield after somewhat longer (6 h) reaction time (entry 7). Reaction of **8** with dimethylamine hydrochloride resulted in formation of *N*,*N*-dimethyl carboxamide **13h** in 80% yield (entry 8). Recently developed<sup>3</sup> palladiumcatalyzed hydroxylation using KOH, Pd<sub>2</sub>dba<sub>3</sub>, and di-*tert*-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl was applied for the conversion of **8** to corresponding hydroxypyridine **13i**. The reaction was performed in 1,4-dioxane—water (3:1) and proceeded smoothly at 80 °C in a short reaction time (1.5 h) to afford the desired hydroxypyridine *C*-ribonucleoside **13i** in very good 73% yield.

For final deprotection of the silvlated nucleosides 13a-i, reaction with Et<sub>3</sub>N·3HF<sup>27</sup> was used. Heating at 40 °C for 2 days followed by treatment with NaHCO3 resulted in complete cleavage of TBS-protecting groups. Chromatographic purification on reverse-phase flash chromatography and subsequent lyophilization/crystallization give free nucleosides 14a-d,f,h in good yields (76-83%, Table 1, entries 1-4, 6, 8, last column). Due to strongly hydrophilic character of compounds 14e,g,i highly polar impurities could not be removed by reverse-phase chromatography. Therefore, ion-exchange chromatography Dowex 50 in H<sup>+</sup> cycle was used to remove polar salts while the pyridine C-nucleosides were eluted after washing with 25% aqueous ammonia. Subsequent purification on reverse-phase flash chromatography and lyophilization give free nucleosides 14e,g,i in good yields (74-75%, Table 1, entries 5, 7, 9, last column).

Analogously, we prepared a series of 6-substituted pyridin-3-yl *C*-ribonucleosides starting from intermediate **11** (Scheme 4, Table 2). Methyl, phenyl, 2-thienyl, and 2-pyridyl substituents

## Scheme 4. Synthesis of a Series of 6-Substituted Pyridin-3-yl C-Ribonucleosides

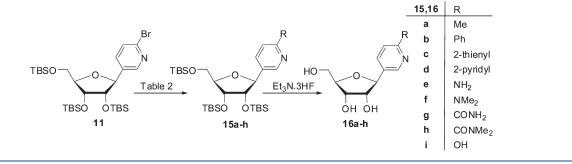



Table 2. Functional Group Transformations of 11 Followed by Deprotection

| entry | reagent                                               | catalyst                         | ligand/Base                                            | solvent                  | other conditions | reaction (yield) | deprotection (yield)          |
|-------|-------------------------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------|------------------|------------------|-------------------------------|
| 1     | Me <sub>3</sub> Al                                    | $Pd(PPh_3)_4$                    |                                                        | THF                      | 2 h, 70 °C       | 15a (93%)        | 16a (90%)                     |
| 2     | $PhB(OH)_2^a$                                         | $Pd(PPh_3)_4$                    | K <sub>2</sub> CO <sub>3</sub>                         | toluene                  | 1.5 h, 110 °C    | 15b (95%)        | 16b (91%)                     |
| 3     | 2-Bu <sub>3</sub> Sn- thiophene <sup>b</sup>          | $Pd(PPh_3)_2Cl_2$                |                                                        | DMF                      | 1.5 h, 110 °C    | <b>15c</b> (81%) | 16c (89%)                     |
| 4     | 2-Bu <sub>3</sub> Sn- pyridine <sup>c</sup>           | $Pd(PPh_3)_2Cl_2$                |                                                        | DMF                      | 4.5 h, 80 °C     | <b>15d</b> (51%) | 16d (52%)                     |
| 5     | LiN(SiMe) <sub>2</sub>                                | Pd2dba3                          | cHex JohPhos <sup>d</sup>                              | THF                      | 5 h 50 °C        | 15e (88%)        | <b>16e</b> (65%) <sup>e</sup> |
| 6     | Me <sub>2</sub> NH <sup>f</sup>                       | Pd <sub>2</sub> dba <sub>3</sub> | JohnPhos <sup>g</sup> /tBuONa                          | toluene                  | 4.5 h 65 °C      | 15f (89%)        | 16f (88%)                     |
| 7     | NH <sub>3</sub> <sup>h</sup> CO <sub>(1 atm)</sub>    | $Pd(OAc)_2$                      | Xantphos <sup>i</sup> / K <sub>3</sub> PO <sub>4</sub> | toluene                  | 2 h, 80 °C       | <b>15g</b> (81%) | 16g (85%)                     |
| 8     | Me <sub>2</sub> NH <sup>f</sup> CO <sub>(1 atm)</sub> | $Pd(OAc)_2$                      | Xantphos <sup>i</sup> / K <sub>3</sub> PO <sub>4</sub> | toluene                  | 3 h, 80 °C       | 15h (76%)        | 16h (88%)                     |
| 9     | КОН                                                   | Pd <sub>2</sub> dba <sub>3</sub> | $\mathbf{L}^{j}$                                       | dioxane/H <sub>2</sub> O | 4 h 80 °C        | 15i (79%)        | <b>16i</b> (41%) <sup>k</sup> |

<sup>*a*</sup> PhB(OH)<sub>2</sub> = phenylboronic acid. <sup>*b*</sup> 2-Bu<sub>3</sub>Sn-thiophene = 2-(tributylstannyl)thiophene. <sup>*c*</sup> 2-Bu<sub>3</sub>Sn-pyridine = 2-(tributylstannyl)pyridine. <sup>*d*</sup> CHex JohPhos = 2-(dicyclohexylphosphino)biphenyl. <sup>*e*</sup> TBAF was used for cleavage of TBS groups. <sup>*f*</sup> 2 M solution in THF. <sup>*g*</sup> JohPhos = (2-biphenyl)di-*tert*-butylphosphane. <sup>*h*</sup> 0.5 M solution in 1,4-dioxane. <sup>*i*</sup> Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene. <sup>*j*</sup> L = di-*tert*-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl. <sup>*k*</sup> Trifluoroacetic acid was used for the cleavage of TBS groups.

were introduced using standard cross-couplings to give the protected alkyl, aryl, and hetaryl C-nucleosides 15a-d in 93%, 95%, 81%, and 51%, respectively (entries 1-4). Reaction of 11 with LiHMDS in the presence of Pd<sub>2</sub>dba<sub>3</sub> and cHex JohnPhos was very efficient, yielding target aminopyridine 15e in 88% yield (entry 5). Dimethylaminopyridine 15f was prepared in excellent 89% yield using the same conditions as in the previous series (entry 6). Palladium-catalyzed aminocarbonylation under atmospheric CO pressure was used for the synthesis of corresponding carboxamides. Thus, reaction of 11 with NH<sub>3</sub> (0.5 M in 1,4-dioxane) and HNMe<sub>2</sub> (2 M in THF) in the presence of Pd(OAc)<sub>2</sub>, Xantphos, and K<sub>3</sub>PO<sub>4</sub> at 80 °C produced target primary and tertiary amides 15g and 15h in 81% and 76% yield, respectively. Palladium-catalyzed hydroxylation using KOH, Pd<sub>2</sub>dba<sub>3</sub> and di-tert-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl in 1,4-dioxanewater was used for the conversion of bromopyridine 11 to corresponding pyridone 15i in 79% yield.

For the final cleavage of TBS-protecting groups, treatment with  $Et_3N \cdot 3HF$  for 2 days at 40 °C followed by basic workup was successfully applied for compounds 15a-d,f-h. Chromatographic purification by reverse-phase flash chromatography and subsequent lyophilization/crystallization give free nucleosides 16a-d,f-h in good yields (52–91%, Table 2, entries 1–4, 6, 8, last column). For compound 15g, ion-exchange chromatography (Dowex 50 in H<sup>+</sup> cycle, eluting with water and then 25% aqueous NH<sub>3</sub>) had to be used prior to the reverse-phase flash chromatography purification, giving free 16g in 85% yield. For the

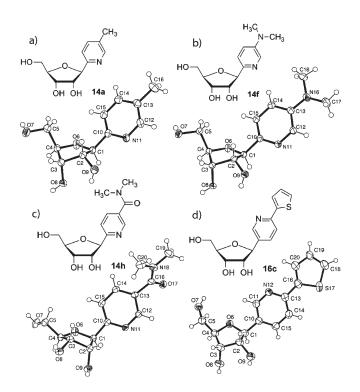



Figure 2. X-ray structures of compounds (a) 14a, (b) 14f, (c) 14h, and (d) 16c.

Table 3. Conformational Analysis of the Sugar Part of Selected Nucleosides 14

| compd | R                  | solvent                     | $P_{\rm N}$ | $\Phi_{\rm N}$ | $P_{\rm S}$ | $\Phi_{\text{S}}$ | $X_N:X_S$ | rms   |
|-------|--------------------|-----------------------------|-------------|----------------|-------------|-------------------|-----------|-------|
| 14a   | Me                 | DMSO-d <sub>6</sub>         | 10          | 35             | 131         | 35                | 52:48     | 0.012 |
|       |                    | CDCl <sub>3</sub>           | -29         | 35             | 146         | 35                | 40:60     | 0.000 |
| 14b   | Ph                 | DMSO- $d_6$                 | 4           | 35             | 127         | 35                | 49:51     | 0.004 |
|       |                    | CDCl <sub>3</sub>           | -29         | 35             | 146         | 35                | 42:58     | 0.000 |
| 14c   | 2-thienyl          | DMSO- <i>d</i> <sub>6</sub> | 10          | 35             | 132         | 35                | 51:49     | 0.011 |
|       |                    | CDCl <sub>3</sub>           | -29         | 35             | 146         | 35                | 40:60     | 0.000 |
| 14d   | 2-py               | DMSO-d <sub>6</sub>         | 15          | 35             | 138         | 35                | 53:47     | 0.027 |
|       |                    | CDCl <sub>3</sub>           | -34         | 35             | 144         | 35                | 40:60     | 0.000 |
| 14f   | Me <sub>2</sub> N  | DMSO-d <sub>6</sub>         | 10          | 35             | 133         | 35                | 49:51     | 0.010 |
|       |                    | CDCl <sub>3</sub>           | -31         | 35             | 142         | 35                | 40:60     | 0.000 |
| 14h   | CONMe <sub>2</sub> | DMSO- <i>d</i> <sub>6</sub> | 11          | 35             | 139         | 35                | 50:50     | 0.011 |
|       |                    | CDCl <sub>3</sub>           | -35         | 35             | 145         | 35                | 36:64     | 0.000 |

deprotection of aminopyridine *C*-nucleoside **15e**, TBAF was found as a reagent of choice. Subsequent ion-exchange chromatography (Dowex 50 in H<sup>+</sup> cycle) and reverse-phase chromatography furnished free *C*-nucleoside **16e** in 65% yield. Desilylation of compound **15i** was performed by treatment with TFA. Free nucleoside **16i** was purified by ion-exchange chromatography followed by reverse-phase chromatography, yielding **16i** in 41%.

Structures of several free *C*-ribonucleosides were determined by single-crystal X-ray diffraction (Figure 2). Surprisingly, the solid-state conformation of the sugar part in compounds 14a, 14f, and 16c was found to be C2'-endo (S-type) typical for 2'deoxyribonucleosides, whereas only amide 14h adopted expected C3'-endo configuration (N-type). No intramolecular H-bonds from 5'-OH to pyridine nitrogen were observed (in contrast to previously reported<sup>12</sup> 6-substituted pyridin-2-yl *C*-ribonucleosides). Therefore, we have determined solution conformation of selected nucleosides by <sup>1</sup>H NMR in DMSO $d_6$  and CDCl<sub>3</sub>. The results (Table 3) indicate that in solution, the equilibrium of both conformers is ca. 1:1 in DMSO whereas in CDCl<sub>3</sub> the N-conformers slightly prevail.

In conclusion, a novel modular diversity-oriented synthesis of a large series of isomeric 5-substituted pyridin-2-yl and 6-substituted pyridin-3-yl C-ribonucleosides bearing diverse alkyl, aryl, hetaryl, amino, carbamoyl, and hydroxy groups was developed starting from 2,5-dibromopyridine. Its regioselective lithiation at position 2 (in toluene) or at position 5 (in  $Et_2O$ ) gave the corresponding isomeric bromopyridyl lithium species that after addition to TBS-protected ribonolactone 4 and follow-up transformations gave the corresponding acylated hemiketals 7 and 10. These readily underwent reductive deacetoxylation using Et<sub>3-</sub> SiH/BF<sub>3</sub>·Et<sub>2</sub>O to give a facile access to multigram amounts of key protected 5-bromypyridin-2-yl and 6-bromopyridin-3-yl C-ribonucleoside intermediates 8 and 11 in good overall yields (68% and 77%). These intermediates were good substrates for Pd-catalyzed cross-coupling reactions with alkylaluminum, arylboronic acids, and hetarylstannanes to give alkyl, aryl, or hetaryl derivatives. Primary and tertiary amines and carboxamines were easily prepared by Hartwig-Buchwald aminations and Pdcatalyzed aminocarbonylations. Recently developed Pd-catalyzed hydroxylation was used for the preparation of corresponding hydroxypyridine and pyridone C-nucleosides. Free nucleosides 14a-i and 16a-i were prepared by desilylation of the intermediates by Et<sub>3</sub>N·3HF, TBAF, or TFA. They did not exert any considerable cytotoxicity, and therefore they are good candidates for conversion to nucleoside triphosphates as model compounds for studying specificity and fidelity of RNA polymerases and primases or could serve as building blocks for modification or construction of base-modified RNAs (artificial ribozymes, riboswitches, aptamers, etc.).

## EXPERIMENTAL SECTION

All cross-coupling reactions were carried out in evacuated flame-dried glassware with magnetic stirring under argon atmosphere. THF, toluene, and hexanes were dried and distilled from sodium/benzophenone. Other reagents were purchased from commercial suppliers and used as received. NMR spectra were recorded on a 400 MHz spectrometer (<sup>1</sup>H at 400 MHz, <sup>13</sup>C at 100.6 MHz), 500 MHz spectrometer (<sup>1</sup>H at 500 and 125.8 MHz at <sup>13</sup>C), and/or 600 MHz spectrometer (<sup>1</sup>H at 600 MHz, <sup>13</sup>C at 151 MHz). The samples were measured in CDCl<sub>3</sub> using TMS as an internal standard or in DMSO- $d_6$  referenced to the residual solvent signal (<sup>1</sup>H NMR  $\delta$  2.50 ppm, <sup>13</sup>C NMR 39.7 ppm). Chemical shifts are given in ppm ( $\delta$  scale), coupling constants (J) in hertz. Complete assignment of all NMR signals was performed using a combination of 2D-NMR (H,H-COSY, H,C-HSQC, and H,C-HMBC) experiments and configurations were established by two-dimensional ROESY spectra. Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured at 25 °C,  $[\alpha]_D$  values are given in  $10^{-1}$  deg·cm<sup>2</sup>·g<sup>-1</sup>. The X-ray diffraction experiment of single crystals was carried out on an X-ray diffractometer using CuKa radiation ( $\lambda = 1.54180$  Å).

 $1\beta$ -(5-Bromopyridin-2-yl)-2,3,5-tri-O-(*tert*-butyldimethy-Isilyl)-D-ribofuranose (5). To a cooled (-78 °C) solution of 2,5dibromopyridine 1 (11.3 g, 47.7 mmol, 6 equiv) in toluene (406 mL) was added n-BuLi (33 mL, 52.5 mmol, 6.6 equiv, 1.6 M in hexanes) dropwise over a period of 10 min. The resulting brown-yellow solution was stirred for a further 30 min at -78 °C, the solution of lactone 4 (3.9 g, 7.9 mmol) in toluene (42 mL) was added dropwise over 10 min, and the mixture was stirred for another 10 min. Subsequently absol MeOH (4.8 mL, 119 mmol, 15 equiv) was added, and the resulting orange-yellow solution was heated to ambient temperature. The reaction mixture was then poured into 2 M HCl (300 mL) and extracted into hexanes (2  $\times$  900 mL). The combined organic layers were washed with 2 M HCl (300 mL), sat. aq NaHCO<sub>3</sub> (300 mL), dried over MgSO<sub>4</sub>, and concentrated under reduced pressure. The crude product was chromatographed on silica gel in gradient hexanes to 9% Et<sub>2</sub>O in hexanes to give 5 (3.7 g, 73%) as a yellowish oil. HRMS (ESI) C<sub>28</sub>H<sub>55</sub>NO<sub>5</sub>Si<sub>3</sub>Br: [M + H] calculated 648.2566, found 648.2556. <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ ): -0.39, -0.10, 0.07, 0.09, 0.14, and 0.15 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.78, 0.92, and 0.95  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ; 3.68 (dd, 1H,  $J_{\text{gem}} = 10.8 \text{ Hz}, J_{5'a,4'} = 7.1 \text{ Hz}, \text{H}-5'a); 3.76 \text{ (dd, 1H, } J_{\text{gem}} = 10.8 \text{ Hz}, J_{5'b,4'}$ = 3.9 Hz, H-5'b); 4.20 (ddd, 1H,  $J_{4',5'a}$  = 7.0 Hz,  $J_{4',5'b}$  = 3.9 Hz,  $J_{4',3'}$  = 0.9 Hz, H-4'); 4.30 (dd, 1H,  $J_{3',2'}$  = 4.5 Hz,  $J_{3',4'}$  = 1.0 Hz, H-3'); 4.68 (d, 1H,  $J_{2',3'} = 4.5$  Hz, H-2'); 5.14 (s, 1H, OH-1'); 7.72 (dd, 1H,  $J_{3,4} = 8.5$  Hz,  $\begin{array}{l} J_{3,6} = 0.8 \; \mathrm{Hz}, \, \mathrm{H}\text{-}3); \, 7.79 \; (\mathrm{dd}, \, 1\mathrm{H}, \, J_{4,3} = 8.5 \; \mathrm{Hz}, \, J_{4,6} = 2.4 \; \mathrm{Hz}, \, \mathrm{H}\text{-}4); \, 8.62 \\ (\mathrm{dd}, \; 1\mathrm{H}, \; J_{6,4} = 2.4 \; \mathrm{Hz}, \; J_{6,3} = 0.8 \; \mathrm{Hz}, \; \mathrm{H}\text{-}6). \ \ ^{13}\mathrm{C} \; \mathrm{NMR} \; (125.7 \; \mathrm{MHz}, \, \mathrm{Hz}). \end{array}$ CDCl<sub>3</sub>): -5.50, -5.47, -5.3, -4.9, -4.54, and -4.52 (CH<sub>3</sub>Si); 17.9, 18.0, and 18.3 ((CH<sub>3</sub>)<sub>3</sub>C); 25.7, 25.8, and 25.9 ((CH<sub>3</sub>)<sub>3</sub>C); 63.2 (CH<sub>2</sub>-5'); 74.7 (CH-3'); 75.0 (CH-2'); 85.1 (CH-4'); 103.3 (C-1'); 120.2 (C-5); 123.4 (CH-3); 138.7 (CH-4); 149.7 (CH-6); 157.2 (C-2). IR spectrum (CCl<sub>4</sub>): 2957, 2929, 1858, 1471, 1463, 1259, 1116, 1009 cm<sup>-1</sup>.

**1β**-(**5-Bromopyridin-2-yl**)-**1,3,5-tri-***O*-(*tert*-butyldimethylsilyl)-D-ribofuranose (**17**). Isolated as a side-product in the synthesis of **5**. HRMS (ESI)  $C_{28}H_{55}NO_5Si_3Br: [M + H]$  calculated 648.2566, found 648.2556. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.25, 0.047, 0.052, 0.06, 0.12, and 0.13 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.86, 0.91, and 0.93 (3 × s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.06 (d,  $J_{OH,2'}$  = 11.2 Hz, OH-2'); 3.76 – 3.82 (m, 2H, H-5'); 3.87 (dd, 1H,  $J_{2',OH}$  = 11.2 Hz,  $J_{2',3'}$  = 6.2 Hz, H-2'); 4.23 (dd, 1H,  $J_{3',2'} = 6.2$  Hz,  $J_{3',4'} = 2.3$  Hz, H-3'); 4.26 (bddd, 1H,  $J_{4',5'a} = 4.4$  Hz,  $J_{4',5'b} = 3.5$  Hz,  $J_{4',3'} = 2.3$  Hz, H-4'); 7.57 (dd, 1H,  $J_{3,4} = 8.4$  Hz,  $J_{3,6} = 0.8$  Hz, H-3); 7.75 (dd, 1H,  $J_{4,3} = 8.4$  Hz,  $J_{4,6} = 2.4$  Hz, H-4); 8.64 (dd, 1H,  $J_{6,4} = 2.4$  Hz,  $J_{6,3} = 0.8$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.5, -5.4, -4.9, -4.7, -3.7, and -3.1 (CH<sub>3</sub>Si); 18.1, 18.3, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.4 (CH<sub>2</sub>-5'); 72.9 (CH-3'); 77.6 (CH-2'); 86.1 (CH-4'); 103.7 (C-1'); 119.9 (C-5); 122.2 (CH-3); 138.6 (CH-4); 149.7 (CH-6); 160.0 (C-2).

1α-(5-Bromopyridin-2-yl)-1-O-acetyl-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (6). To a cooled (-78 °C) solution of 2,5-dibromopyridine 1 (267 mg, 1.13 mmol, 6 equiv) in toluene (14 mL) was added n-BuLi (0.7 mL, 1.13 mmol, 6 equiv, 1.6 M in hexanes) dropwise over a period of 10 min. The resulting brown-yellow solution was stirred for a further 30 min at -78 °C, a solution of lactone 4 (92 mg, 0.19 mmol) in toluene (1 mL) was added dropwise over a period of 1 min, and the stirring was continued for another 10 min. Subsequently, Ac<sub>2</sub>O (130  $\mu$ L, 1.35 mmol, 7.2 equiv) was added dropwise. and the resulting orange-yellow solution was allowed to warm to ambient temperature. The reaction mixture was then poured into sat. aq NaHCO<sub>3</sub> (20 mL), carefully neutralized, extracted to hexanes (2  $\times$ 80 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude product was chromatographed on silica gel in gradient hexanes to 5%  $Et_2O$  in hexanes to give 6 (23 mg, 18%) as a yellowish oil. HRMS (ESI) C<sub>30</sub>H<sub>56</sub>NO<sub>6</sub>Si<sub>3</sub>BrNa: [M + Na] calculated 712.2491, found 712.2493. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.38, -0.10, 0.06, 0.080, 0.088, and 0.090 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.87, 0.89, and 0.94  $(3 \times s, 3 \times 9H, (CH_3)_3C); 2.09 (s, 3H, CH_3CO); 3.78 (dd, 1H, J_{gem} =$ 11.3 Hz,  $J_{5'a,4'} = 2.1$  Hz, H-5'a); 3.95 (dd, 1H,  $J_{gem} = 11.3$  Hz,  $J_{5'b,4'} = 2.9$ Hz, H-5'b); 4.08 (d, 1H,  $J_{2',3'}$  = 5.1 Hz, H-2'); 4.17 (dd, 1H,  $J_{3',2'}$  = 5.1 Hz,  $J_{3',4'} = 2.6$  Hz, H-3'); 4.27 (m, 1H, H-4'); 7.59 (dd, 1H,  $J_{3,4} = 8.5$  Hz,  $J_{3,6} = 0.7$  Hz, H-3); 7.74 (dd, 1H,  $J_{4,3} = 8.5$  Hz,  $J_{4,6} = 2.4$  Hz, H-4); 8.55 (dd, 1H,  $J_{6,4} = 2.4$  Hz,  $J_{6,3} = 0.7$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.62, -5.61, -5.5, -4.6, -4.40, and -4.37 (CH<sub>3</sub>Si); 17.9, 18.1, and 18.3 ((CH<sub>3</sub>)<sub>3</sub>C); 21.9 (CH<sub>3</sub>CO); 25.74, 25.79, and 25.9  $((CH_3)_3C); 62.6 (CH_2-5'); 72.1 (CH-3'); 79.6 (CH-2'); 87.3 (CH-4');$ 105.6 (C-1'); 119.9 (C-5); 122.3 (CH-3); 138.8 (CH-4); 149.3 (CH-6); 157.3 (C-2); 169.8 (CO). IR spectrum (KBr): 2956, 2930, 1858, 1754, 1472, 1463, 1263, 1255, 1094, 1009, 839 cm<sup>-1</sup>.

 $1\beta$ -(5-Bromopyridin-2-yl)-1-O-acetyl-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (7). To a solution of 5 (5.0 g, 7.7 mmol) in toluene (46 mL) was added LiHMDS (11.6 mL, 11.6 mmol, 1 M in THF, 1.5 equiv) at room temperature. The reaction mixture was stirred for 5 min, Ac<sub>2</sub>O (1.1 mL, 11.6 mmol, 1.5 equiv) was added dropwise, and the stirring was continued for another 5 min (addition of 1.5 equiv of LiHMDS followed by Ac<sub>2</sub>O (1.5 equiv) was repeated two more times). Then sat. aq NaHCO<sub>3</sub> (300 mL) was added, and the mixture was stirred for 10 min at room temperature, transferred to separatory funnel, and extracted with EtOAc (2  $\times$  600 mL). The organic layers were dried over Na2SO4, concentrated under reduced pressure, and chromatographed on silica gel column eluting in gradient hexanes to 10% EtOAc in hexanes to give 7 (4.36 g, 84%) as a yellowish oil. HRMS (ESI) C<sub>30</sub>H<sub>56</sub>NO<sub>6</sub>Si<sub>3</sub>BrNa: [M + Na] calculated 712.2491, found 712.2492. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): -0.64, -0.01, 0.03, 0.04, 0.11, and 0.15 ( $6 \times s$ ,  $6 \times 3H$ , CH<sub>3</sub>Si); 0.62, 0.88, and 0.90 ( $3 \times s$ , 3 $\times$  9H, (CH<sub>3</sub>)<sub>3</sub>C); 1.92 (s, 3H, CH<sub>3</sub>CO); 3.69 (dd, 1H,  $J_{gem}$  = 12.2 Hz,  $J_{5'a,4'} = 3.2$  Hz, H-5'a); 3.94 (dd, 1H,  $J_{gem} = 12.2$  Hz,  $J_{5'b,4'} = 2.3$  Hz, H-5'b); 4.18 (bdt, 1H,  $J_{4',3'}$  = 8.0 Hz,  $J_{4',5'a}$  =  $J_{4',5'b}$  = 2.7 Hz, H-4'); 4.24 (d, 1H,  $J_{2',3'} = 3.5$  Hz, H-2'); 4.55 (dd, 1H,  $J_{3',4'} = 8.1$  Hz,  $J_{3',2'} = 3.5$  Hz, H-3'; 7.50 (dd, 1H,  $J_{3,4} = 8.5$  Hz,  $J_{3,6} = 0.8$  Hz, H-3); 8.02 (dd, 1H,  $J_{4,3} =$ 8.5 Hz,  $J_{4,6} = 2.4$  Hz, H-4); 8.60 (dd, 1H,  $J_{6,4} = 2.4$  Hz,  $J_{6,3} = 0.8$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): -5.4, -5.28, -5.27, -4.7, -4.4, and -3.8 (CH<sub>3</sub>Si); 17.8, 18.1, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 21.9 (CH<sub>3</sub>CO); 25.7, 26.1, and 26.2 ((CH<sub>3</sub>)<sub>3</sub>C); 61.1 (CH<sub>2</sub>-5'); 70.9 (CH-3'); 78.6 (CH-2'); 83.9 (CH-4'); 107.9 (C-1'); 119.4 (C-5); 125.3 (CH-3); 138.5 (CH-4); 149.0 (CH-6); 156.1 (C-2); 167.5 (CO). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2858, 1756, 1578, 1559, 1472, 1464, 1366, 1253, 1213, 1171, 1121, 1072, 988 cm<sup>-1</sup>.

1β-(5-Bromopyridin-2-yl)-1-deoxy-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (8). Et<sub>3</sub>SiH (3.5 mL, 21.7 mmol, 3 equiv) was added in one portion to a stirred solution of acylated hemiketal 7 (5.0 g, 7.23 mmol) in dry dichloromethane (36 mL) on ice bath (0 °C) under argon. After 5 min, BF<sub>3</sub> · Et<sub>2</sub>O (1.3 mL, 10.8 mmol, 1.5 equiv) was slowly added in one portion, and the resulting mixture was stirred for an additional 5 min. Subsequently, Et<sub>3</sub>N (20 mL) was added, and the reaction mixture was evaporation under reduced pressure. The crude product was directly chromatographed on silica gel in gradient hexanes to 2%  $Et_2O$  in hexanes to give 8 (3.7 g, 81%) as a colorless oil. HRMS (ESI) C28H55NO4Si3Br: [M + H] calculated 632.2617, found 632.2617. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.17, -0.04, 0.06, 0.07, 0.10, and 0.11 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.84, 0.91, and 0.93 (3 × s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.76 (dd, 1H,  $J_{gem} = 11.1 \text{ Hz}$ ,  $J_{5'a,4'} =$ 2.9 Hz, H-5'a); 3.87 (dd, 1H,  $J_{gem} = 11.1$  Hz,  $J_{5'b,4'} = 3.8$  Hz, H-5'b); 4.07 (btd, 1H,  $J_{4',3'} = J_{4',5'b} = 4.0$  Hz,  $J_{4',5'a} = 2.9$  Hz, H-4'); 4.10 (bt, 1H,  $J_{3',2'} =$  $J_{3',4'} = 4.1 \text{ Hz}, \text{H-}3'$ ; 4.14 (dd, 1H,  $J_{2',1'} = 5.4 \text{ Hz}, J_{2',3'} = 4.1 \text{ Hz}, \text{H-}2'$ ); 4.90 (d, 1H,  $J_{1',2'}$  = 5.4 Hz, H-1'); 7.54 (bd, 1H,  $J_{3,4}$  = 8.4 Hz, H-3); 7.77  $(dd, 1H, J_{4,3} = 8.4 Hz, J_{4,6} = 2.4 Hz, H-4); 8.62 (bd, H, J_{6,4} = 2.4 Hz, H-6).$ <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.41, -5.39, -4.95, -4.61, -4.59, and -4.4 (CH<sub>3</sub>Si); 18.00, 18.04, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.80, 25.85, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 62.8 (CH<sub>2</sub>-5'); 72.5 (CH-3'); 78.5 (CH-2'); 84.4 (CH-1'); 84.7 (CH-4'); 119.4 (C-5); 123.0 (CH-3); 138.8 (CH-4); 149.9 (CH-6); 159.2 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 1930, 1858, 1472, 1463, 1362, 1256, 1155, 1130, 1119, 1077, 1009 cm<sup>-1</sup>.

1β-(6-Bromopyridin-3-yl)-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (9). To a cooled (-78 °C) solution of 2,5dibromopyridine 1 (519 mg, 2.19 mmol, 5 equiv) in Et<sub>2</sub>O (26 mL) was added n-BuLi (1.6 mL, 2.52 mmol, 5.75 equiv, 1.6 M in hexanes) dropwise over a period of 3 min. The resulting red solution was stirred for a further 30 min at  $-78\,$  °C, a solution of lactone 4 (215 mg, 0.438 mmol) in  $Et_2O(3 mL)$  was added dropwise in 3 min, and stirring was continued for another 10 min. Subsequently, absol MeOH (0.18 mL, 4.38 mmol, 10 equiv) was added at -78 °C, and the resulting orange-yellow solution was allowed to warm to ambient temperature. The reaction mixture was then poured into 2 M HCl (30 mL) and extracted to Et<sub>2</sub>O (2  $\times$  70 mL). Combined organic layers were washed with 2 M HCl (30 mL) and sat. aq NaHCO3 (30 mL), dried over MgSO<sub>4</sub>, and concentrated under reduced pressure. The crude product was chromatographed on silica gel in gradient hexanes to 2% Et<sub>2</sub>O in hexanes to give 9 (213 mg, 75%) as a yellowish oil. HRMS (ESI) C<sub>28</sub>H<sub>55</sub>NO<sub>5</sub>Si<sub>3</sub>Br: [M + H] calculated 648.2566, found 648.2568. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.50, -0.10, 0.12, 0.127, and 0.134 (6 × s,  $6 \times 3$ H, CH<sub>3</sub>Si); 0.84, 0.92, and 0.95 ( $3 \times s$ ,  $3 \times 9$ H, (CH<sub>3</sub>)<sub>3</sub>C); 3.80  $(dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 2.4 Hz, H-5'a); 3.84 (dd, 1H, J_{gem} = 11.1$ Hz,  $J_{5'b,4'} = 3.3$  Hz, H-5'b); 4.01 (d, 1H,  $J_{2',3'} = 4.6$  Hz, H-2'); 4.18 (dd, 1H,  $J_{3',2'}$  = 4.6 Hz,  $J_{3',4'}$  = 0.7 Hz, H-3'); 4.23 (m, 1H, H-4'); 5.13 (s, 1H, OH-1'); 7.42 (dd, 1H, J<sub>5,4</sub> = 8.3 Hz, J<sub>5,2</sub> = 0.7 Hz, H-5); 7.80 (dd, 1H,  $J_{4,5} = 8.3 \text{ Hz}, J_{4,2} = 2.5 \text{ Hz}, \text{H-4}$ ; 8.59 (dd, 1H,  $J_{2,4} = 2.5 \text{ Hz}, J_{2,5} = 0.7 \text{ Hz}$ , H-2). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.63, -5.62, -5.4, -4.8, -4.58, and -4.46 (CH<sub>3</sub>Si); 17.81, 17.85, and 18.3 ((CH<sub>3</sub>)<sub>3</sub>C); 25.70, 25.74, and 25.9 ((CH<sub>3</sub>)<sub>3</sub>C); 63.5 (CH<sub>2</sub>-5'); 74.9 (CH-3'); 77.7 (CH-2'); 85.5 (CH-4'); 102.8 (C-1'); 126.9 (CH-5); 136.1 (C-3); 137.4 (CH-4); 141.9 (C-6); 149.3 (CH-2). IR spectrum (CCl<sub>4</sub>): 3499, 2956, 2931, 1585, 1472, 1462, 1363, 1257, 1103 cm<sup>-1</sup>.

**1β**-(6-Bromopyridin-3-yl)-1,3,5-tri-*O*-(*tert*-butyldimethylsilyl)-D-ribofuranose (12). Isolated as a side-product in the synthesis of 9. HRMS (ESI)  $C_{28}H_{55}NO_5Si_3Br: [M + H]$  calculated 648.2566, found 648.2566. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.32, 0.06, 0.07, 0.11, 0.12, and 0.13 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.84, 0.90, and 0.93 (3 × s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 2.99 (d, 1H,  $J_{OH,2'}$  = 12.4 Hz, OH-2'); 3.70 (dd, 1H,  $J_{2',OH'} = 12.4 \text{ Hz}, J_{2',3'} = 6.4 \text{ Hz}, H-2')$ ; 3.77 (dd, 1H,  $J_{gem} = 11.0 \text{ Hz}, J_{5'a,4'} = 2.6 \text{ Hz}, H-5'a)$ ; 3.83 (dd, 1H,  $J_{gem} = 11.0 \text{ Hz}, J_{5'b,4'} = 3.2 \text{ Hz}, H-5'b)$ ; 4.20 (dd, 1H,  $J_{3',2'} = 6.4 \text{ Hz}, J_{3',4'} = 1.7 \text{ Hz}, H-3')$ ; 4.24 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 2.9 \text{ Hz}, J_{4',3'} = 1.7 \text{ Hz}, H-4')$ ; 7.40 (dd, 1H,  $J_{5,4} = 8.3 \text{ Hz}, J_{5,2} = 0.8 \text{ Hz}, H-5)$ ; 7.77 (dd, 1H,  $J_{4,5} = 8.3 \text{ Hz}, J_{4,2} = 2.5 \text{ Hz}, H-4)$ ; 8.55 (dd, 1H,  $J_{2,4} = 2.5 \text{ Hz}, J_{2,5} = 0.8 \text{ Hz}, H-2)$ . <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.7, -5.4, -4.9, -4.7, -3.6, and -2.9 (CH<sub>3</sub>Si); 17.9, 18.2, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.6 (CH<sub>2</sub>-5'); 72.9 (CH-3'); 79.0 (CH-2'); 86.8 (CH-4'); 102.9 (C-1'); 127.0 (CH-5); 136.3 (CH-4); 138.9 (C-3); 141.4 (C-6); 147.9 (CH-2).

1*β*-(6-Bromopyridin-3-yl)-1-O-acetyl-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (10). To a cooled (-78 °C) solution of 2,5-dibromopyridine 1 (1.18 g, 5.0 mmol, 5 equiv) in  $Et_2O$ (60 mL) was added *n*-BuLi (3.6 mL, 5.73 mmol, 5.75 equiv, 1.6 M in hexanes) dropwise over a period of 3 min. The resulting red solution was stirred for a further 30 min at -78 °C, a solution of lactone 4 (489 mg, 1.00 mmol) in Et\_2O (7.0 mL) was added dropwise over a period of 3 min, and the stirring was continued for another 10 min. Subsequently, Ac<sub>2</sub>O (760  $\mu$ L, 7.47 mmol, 7.5 equiv) was added dropwise, and the resulting yellow solution was allowed to warm to ambient temperature. Then the mixture was cooled to -78 °C, and LiHMDS (5.0 mL, 5.00 mmol, 5 equiv 1.0 M in THF) was added. The resulting yellow solution was stirred for a further 5 min, Ac\_2O (470  $\mu L$ , 5.0 mmol, 5 equiv) was added, and the reaction was allowed to warm to ambient temperature and quenched with sat. aq NaHCO3 (200 mL). After additional stirring for a further 15 min, the mixture was extracted with Et\_2O (2  $\times$  300 mL), dried over Na\_2SO4, and concentrated under reduced pressure. The resulting brown-orange solid was suspended in hexanes (500 mL), and the organic layer was filtered off and concentrated under reduced pressure to afford a yellowish oil. The crude product was chromatographed on silica gel in gradient hexanes to 6% EtOAc in hexanes to give 10 (528 mg, 77%) as a light yellow oil. HRMS (ESI) C<sub>30</sub>H<sub>57</sub>NO<sub>6</sub>Si<sub>3</sub>Br: [M + H] calculated 690.2672, found 690.2673. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): -0.51, -0.09, 0.07, 0.09, 0.098, and 0.104 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.85, 0.86, and 0.92 (3  $\times$  s, 3  $\times$  9H,  $(CH_3)_3C$ ; 2.01 (s, 3H, CH<sub>3</sub>CO); 3.79 (d, 1H,  $J_{2',3'} = 5.3$  Hz, H-2'); 3.80 (dd, 1H,  $J_{gem}$  = 11.5 Hz,  $J_{5'a,4'}$  = 2.4 Hz, H-5'a); 3.88 (dd, 1H,  $J_{gem}$  = 11.5 Hz,  $J_{5'b,4'} = 3.1$  Hz, H-5'b); 4.10 (dd, 1H,  $J_{3',2'} = 5.4$  Hz,  $J_{3',4'} = 1.2$ Hz, H-3'); 4.21 (btd, 1H,  $J_{4',5'a} = J_{4',5'b} = 2.7$  Hz,  $J_{4',3'} = 1.1$  Hz, H-4'); 7.61 (dd, 1H,  $J_{4,3}$  = 8.3 Hz,  $J_{4,6}$  = 2.5 Hz, H-4); 7.67 (dd, 1H,  $J_{3,4}$  = 8.3 Hz,  $J_{3,6} = 0.8$  Hz, H-3); 8.31 (bdd, 1H,  $J_{6,4} = 2.4$  Hz,  $J_{6,3} = 0.8$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-d<sub>6</sub>): -5.8, -5.6, -5.4, -4.7, -4.5, and -4.2 (CH<sub>3</sub>Si); 17.68, 17.72, and 18.0 ((CH<sub>3</sub>)<sub>3</sub>C); 21.8 (CH<sub>3</sub>CO); 25.70, 25.73, and 25.9 ((CH<sub>3</sub>)<sub>3</sub>C); 63.0 (CH<sub>2</sub>-5'); 72.0 (CH-3'); 80.2 (CH-2'); 88.0 (CH-4'); 104.5 (C-1'); 127.5 (CH-3); 135.8 (C-5); 136.4 (CH-4); 140.9 (C-2); 147.4 (CH-6); 168.4 (CO). IR spectrum (CCl<sub>4</sub>):2955, 2931, 2859, 1758, 1242, 1365, 1119, 840 cm<sup>-</sup>

1*β*-(6-Bromopyridin-3-yl)-1-deoxy-2,3,5-tri-*O*-(*tert*-buty-Idimethylsilyl)-D-ribofuranose (11). Et<sub>3</sub>SiH (630 µL, 3.9 mmol, 3 equiv) was added in one portion to a stirred solution of acylated hemiketal 10 (905 mg, 1.3 mmol) in dry dichloromethane (7 mL) cooled to -10 °C. After 5 min, BF3 · Et2O (234 µL, 2.0 mmol, 1.5 equiv) was slowly added, and the resulting mixture was stirred for an additional 5 min. Subsequently, Et<sub>3</sub>N (20 mL) was added, and the reaction mixture was evaporation under reduced pressure. The crude product was directly chromatographed on silica gel in gradient hexanes to 2% Et<sub>2</sub>O in hexanes to give 11 (588 mg, 71%) as a colorless oil. HRMS (ESI)  $C_{2,8}H_{55}NO_4Si_3Br$ : [M + H] calculated 632.2617, found 632.2614. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): -0.44, -0.10, 0.08, 0.09, 0.10, and 0.11 ( $6 \times s$ ,  $6 \times 3H$ , CH<sub>3</sub>Si); 0.81, 0.92, and 0.93 ( $3 \times s$ ,  $3 \times 9$ H, (CH<sub>3</sub>)<sub>3</sub>C); 3.75 (dd, 1H,  $J_{gem} = 11.1$  Hz,  $J_{5'a,4'} = 2.7$  Hz, H-5'a); 3.78 (dd, 1H,  $J_{gem} = 11.1 \text{ Hz}$ ,  $J_{5'b,4'} = 3.5 \text{ Hz}$ , H-5'b); 3.83 (dd,  $J_{2',1'} = 8.2$  Hz,  $J_{2',3'} = 4.4$  Hz, H-2'); 4.04 (ddd, 1H,  $J_{4',5'b} = 3.5$  Hz,  $J_{4',5'a} = 2.7$  Hz,  $J_{4',3'} = 1.4$  Hz, H-4'); 4.11 (ddd, 1H,  $J_{3',2'} = 4.4$  Hz,

 $J_{3',4'} = 1.5 \text{ Hz}, J_{3',1'} = 0.5 \text{ Hz}, \text{H-3'}$ ; 4.75 (bd, 1H,  $J_{1',2'} = 8.2 \text{ Hz}, \text{H-1'}$ ); 7.42 (bd, 1H,  $J_{5,4} = 8.3 \text{ Hz}, \text{H-5}$ ); 7.67 (ddd, 1H,  $J_{4,5} = 8.2 \text{ Hz}, J_{4,2} = 2.4 \text{ Hz}, J_{4,1'} = 0.6 \text{ Hz}, \text{H-4}$ ); 8.36 (dt, 1H,  $J_{2,4} = 2.4 \text{ Hz}, J_{2,5} = J_{2,1'} = 0.6 \text{ Hz}, \text{H-2}$ ).<sup>13</sup>C NMR (150.9 MHz, CDCl<sub>3</sub>): -5.6, -5.4, -5.3, -4.50, -4.48, and -4.39 (CH<sub>3</sub>Si); 17.8, 18.0, and 18.3 ((CH<sub>3</sub>)<sub>3</sub>C); 25.76, 25.83, and 25.9 ((CH<sub>3</sub>)<sub>3</sub>C); 63.6 (CH<sub>2</sub>-5'); 74.0 (CH-3'); 79.5 (CH-2'); 79.8 (CH-1'); 86.7 (CH-4'); 127.5 (CH-5); 135.9 (C-3); 136.9 (CH-4); 141.2 (C-6); 148.9 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2859, 1585, 1564, 1472, 1463, 1257, 1153, 1113, 1089 cm<sup>-1</sup>.

1β-(6-Bromopyridin-3-yl)-1-deoxy-2,3,5-tri-O-(*tert*-buty-Idimethylsilyl)-D-ribofuranose (11): Optimized Procedure **Starting from 1.** To a cooled  $(-78 \,^{\circ}\text{C})$  solution of 2,5-dibromopyridine 1 (1.54 g, 6.47 mmol, 5 equiv) in Et<sub>2</sub>O (78 mL) was added n-BuLi (4.7 mL, 7.45 mmol, 5.75 equiv, 1.6 M in hexanes) dropwise over a period of 3 min. The resulting red solution was stirred for a further 30 min at -78 °C, a solution of lactone 4 (636 mg, 1.29 mmol) in Et<sub>2</sub>O (9.0 mL) was added dropwise over a period of 3 min, and the stirring was continued for another 10 min. Subsequently, Ac\_2O (920  $\mu L$ , 9.72 mmol, 7.5 equiv) was added dropwise, and resulting yellow solution was allowed to warm to ambient temperature. The mixture was then cooled to -78 °C, and LiHMDS (6.5 mL, 6.5 mmol, 5 equiv 1.0 M in THF) was added. The resulting yellow solution was stirred for a further 3 min,  $Ac_2O(613 \mu L, 6.47 \text{ mmol}, 5 \text{ equiv})$  was added, and the reaction mixture was allowed to warm to ambient temperature and quenched with sat. aq NaHCO<sub>3</sub> (200 mL). After additional stirring for a further 20 min, the reaction mixture was extracted with Et<sub>2</sub>O (2  $\times$  300 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The resulting brown-orange solid was suspended in hexanes (500 mL), and the organic layer was filtered off and concentrated under reduced pressure to afford crude 10 as a yellowish oil (1.26 g). Crude 10 was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (9 mL) and cooled to -10 °C, Et<sub>3</sub>SiH (871  $\mu$ L, 5.47 mmol, 3 equiv) was added, and the resulting solution was stirred for a further 5 min. Subsequently, BF<sub>3</sub>·Et<sub>2</sub>O (544 µL, 4.56 mmol, 2.5 equiv) was added dropwise. After 15 min, Et<sub>3</sub>N (15 mL) was added, and the reaction mixture was warmed up to room temperature and concentrated under reduced pressure. The crude product was chromatographed on silica gel in gradient hexanes to 2.7% Et<sub>2</sub>O in hexanes to give 11 (629 g, 77%, based on lactone 4) as a colorless oil.

1*β*-(5-Methylpyridin-2-yl)-2,3,5-tri-*O*-(*tert*-butyldimethy-Isilyl)-D-ribofuranose (13a). Me<sub>3</sub>Al (0.93 mL, 1.86 mmol, 2 equiv, 2 M in toluene) was added to a vigorously stirred solution of 8 (587 mg, 0.927 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (54 mg, 0.043 mmol, 5 mol %) in THF (13 mL) under argon. The mixture was stirred at 65 °C for 12 h, quenched by pouring into saturated NaH<sub>2</sub>PO<sub>4</sub> (50 mL), and extracted to EtOAc (3  $\times$  50 mL). The crude product was chromatographed on silica gel in gradient hexanes to 3.5% EtOAc in hexanes to give 13a (472 mg, 90%) as colorless oil. HRMS (ESI) C<sub>29</sub>H<sub>58</sub>NO<sub>4</sub>Si<sub>3</sub>: [M + H] calculated 568.3668, found 568.3671. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): -0.25, -0.11, 0.05, 0.07, 0.08, and 0.09 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.77, 0.89, and 0.90  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ; 2.28  $(s, 3H, CH_3-5)$ ; 3.70 (dd, 1H,  $J_{gem} = 11.2$  Hz,  $J_{5'a,4'} = 3.4$  Hz, H-5'a); 3.80 (dd, 1H,  $J_{gem} =$ 11.2 Hz,  $J_{5'b,4'} = 4.2$  Hz, H-5'b); 3.92 (bq, 1H,  $J_{4',3'} = J_{4',5'a} = J_{4',5'b} = 3.7$ Hz, H-4'); 4.10 (m, 1H, H-3'); 4.16 (dd, 1H,  $J_{2',1'} = 5.9$  Hz,  $J_{2',3'} = 4.4$ Hz, H-2'); 4.70 (d, 1H,  $J_{1',2'}$  = 5.9 Hz, H-1'); 7.45 (bd, 1H,  $J_{3,4}$  = 7.9 Hz, H-3); 7.57 (ddd, 1H,  $J_{4,3}$  = 7.9 Hz,  $J_{4,6}$  = 2.3 Hz,  $J_{LR}$  = 0.8 Hz, H-4); 8.35 (dt, 1H,  $J_{6,4}$  = 2.3 Hz,  $J_{6,3}$  =  $J_{LR}$  = 0.8 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-d<sub>6</sub>): -5.3, -5.1, and -4.6 (CH<sub>3</sub>Si); 17.8 (CH<sub>3</sub>-5); 17.88, 17.98, and 18.2 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 62.9 (CH<sub>2</sub>-5'); 72.8 (CH-3'); 78.1 (CH-2'); 84.3 and 84.4 (CH-1',4'); 121.1 (CH-3); 132.3 (C-5); 136.9 (CH-4); 149.1 (CH-6); 157.1 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2929, 2858, 1602, 1574, 1472, 1463, 1389, 1362, 1254, 1155, 997, 838 cm<sup>-1</sup>.

1β-(5-Phenylpyridin-2-yl)-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (13b). Compound 8 (504 mg, 0.796 mmol),

K<sub>2</sub>CO<sub>3</sub> (243 mg, 1.75 mmol, 2.2 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (46 mg, 0.040 mmol, 5 mol %), and PhB(OH)<sub>2</sub> (194 mg, 1.59 mmol, 2 equiv) were dissolved in toluene (16 mL) under argon, and the mixture was stirred at 100 °C for 3 h. The reaction mixture was concentrated under reduced pressure, and crude product was chromatographed on silica gel in toluene to give 13b (446 mg, 89%) as a colorless oil. HRMS (ESI)  $C_{34}H_{60}NO_4Si_3$ : [M + H] calculated 630.3825, found 630.3828. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.12, -0.01, 0.109, 0.112, 0.13, and 0.14  $(6 \times s, 6 \times 3H, CH_3Si)$ ; 0.86, 0.95, and 0.96  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ;  $3.83 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 11.1 Hz, J_{5'a,4'} = 3.5 Hz, H-5'a); 3.91 (dd, 1H, J_{gem} = 3.5 Hz, H_{5'a,4'} = 3.5 H$ 11.1 Hz,  $J_{5'b,4'} = 4.5$  Hz, H-5'b); 4.12 (td,  $J_{4',3'} = J_{4',5'b} = 4.2$  Hz,  $J_{4',5'a} = 4.5$  Hz,  $J_{4',5'a} = 4.5$ 3.5 Hz, H-4'); 4.20 (bt, 1H,  $J_{3',4'} = J_{3',2'} = 4.1$  Hz, H-3'); 4.30 (dd, 1H,  $J_{2',1'} = 5.7$  Hz,  $J_{2',3'} = 4.3$  Hz, H-2'); 5.02 (d, 1H,  $J_{1',2'} = 5.7$  Hz, H-1'); 7.40 (m, 1H, H-p-Ph); 7.47 (m, 2H, H-m-Ph); 7.58 (m, 2H, H-o-Ph); 7.65 (bd, 1H,  $J_{3,4}$  = 8.1 Hz, H-3); 7.86 (dd, 1H,  $J_{4,3}$  = 8.1 Hz,  $J_{4,6}$  = 2.4 Hz, H-4); 8.83 (dd, 1H,  $J_{6,4}$  = 2.4 Hz,  $J_{6,3}$  = 0.8 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.34, -5.31, -4.8, -4.48, -4.47, and -4.3 (CH<sub>3</sub>Si); 18.10, 18.13, and 18.5 ((CH<sub>3</sub>)<sub>3</sub>C); 25.93, 25.97, and 26.1 ((CH<sub>3</sub>)<sub>3</sub>C); 63.4 (CH<sub>2</sub>-5'); 73.1 (CH-3'); 78.6 (CH-2'); 84.5 (CH-1'); 85.1 (CH-4'); 121.9 (CH-3); 127.2 (CH-o-Ph); 128.1 (CH-p-Ph); 129.1 (CH-m-Ph); 135.0 (CH-4); 135.8 (C-5); 137.9 (C-i-Ph); 147.0 (C-6); 159.0 (C-2). IR spectrum (CCl<sub>4</sub>): 2957, 2930, 2858, 1597, 1473, 1362, 1258, 1155, 1120, 1006 cm<sup>-1</sup>.

 $1\beta$ -[5-(2-Thienyl)pyridin-2-yl]-1-deoxy-2,3,5-tri-O-(*tert*butyldimethylsilyl)-D-ribofuranose (13c). DMF (15 mL) was added to a flame-dried and argon-purged flask containing 8 (600 mg, 0.948 mmol) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (33 mg, 0.047 mmol, 5 mol %). After 5 min stirring at room temperature, tributyl(thiophen-2-yl)stannane (0.4 mL, 1.33 mmol, 1.4 equiv) was added, and reaction vessel was immersed to oil bath (100 °C) and stirred for 2 h. After cooling to room temperature, the crude reaction mixture was diluted with Et<sub>2</sub>O (100 mL), washed with 2 M HCl (2  $\times$  100 mL) and saturated NaHCO<sub>3</sub> (100 mL), and dried over MgSO<sub>4</sub>. After evaporation of solvents under reduced pressure, crude product was chromatographed on silica gel in gradient hexanes to 2% EtOAc in hexanes to obtain 13c (509 mg, 84%) as a colorless oil. HRMS (ESI) C<sub>32</sub>H<sub>58</sub>NSO<sub>4</sub>Si<sub>3</sub>: [M + H] calculated 636.3389, found 636.3395. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.10, 0.00, 0.101, 0.104, 0.13, and 0.14 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.87, 0.95, and 0.96 (3 × s, 3 × 9H,  $(CH_3)_3C$ ; 3.81 (dd, 1H,  $J_{gem} = 11.1 \text{ Hz}$ ,  $J_{5'a,4'} = 3.5 \text{ Hz}$ , H-5'a); 3.90  $(dd, 1H, J_{gem} = 11.1 Hz, J_{5'b,4'} = 4.3 Hz, H-5'b); 4.11 (btd, 1H, J_{4',5'b} =$  $J_{4',3'} = 4.2$  Hz,  $J_{4',5'a} = 3.6$  Hz, H-4'); 4.17 (t, 1H,  $J_{3',2'} = J_{3',4'} = 4.3$  Hz, H-3'); 4.29 (bdd, 1H,  $J_{2',1'}$  = 5.4 Hz,  $J_{2',3'}$  = 4.4 Hz, H-2'); 4.98 (d, 1H,  $J_{1',2'} = 5.5$  Hz, H-1'); 7.11 (dd, 1H,  $J_{4,5} = 5.1$  Hz,  $J_{4,3} = 3.6$  Hz, H-4thienyl); 7.34 (bdd, 1H,  $J_{5,4}$  = 5.0 Hz,  $J_{5,3}$  = 1.2 Hz, H-5-thienyl); 7.35 (bdd, 1H,  $J_{3,4}$  = 3.5 Hz,  $J_{3,5}$  = 1.2 Hz, H-3-thienyl); 7.59 (bd, 1H,  $J_{3,4}$  = 8.2 Hz, H-3); 7.83 (dd, 1H,  $J_{4,3}$  = 8.1 Hz,  $J_{4,6}$  = 2.3 Hz, H-4); 8.85 (bd, 1H,  $J_{6,4}$  = 2.3 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.34, -5.30, -4.76, -4.50, 4.47, and -4.29 (CH<sub>3</sub>Si); 18.09, 18.12, and 18.5 ((CH<sub>3</sub>)<sub>3</sub>C); 25.93, 25.97, and 26.1 ((CH<sub>3</sub>)<sub>3</sub>C); 63.3 (CH<sub>2</sub>-5'); 73.0 (CH-3'); 78.5 (CH-2'); 84.7 (CH-1'); 84.9 (CH-4'); 121.9 (CH-3); 124.2 (CH-3-thienyl); 125.8 (CH-5-thienyl); 128.2 (CH-4thienyl); 129.5 (C-5); 133.5 (CH-4); 140.6 (C-2-thienyl); 146.0 (C-6); 159.1 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2858, 1600, 1578, 1472, 1463, 1282, 1256, 1145, 1080 cm<sup>-</sup>

1β-[5-(2-Pyridyl)pyridin-2-yl]-1-deoxy-2,3,5-tri-O-(tertbutyldimethylsilyl)-D-ribofuranose (13d). DMF (5 mL) was added to a flame-dried and argon-purged flask containing 8 (189 mg, 0.30 mmol), and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11 mg, 0.015 mmol, 5 mol %). After 5 min stirring at room temperature, tributyl(pyridin-2-yl)stannane (0.15 mL, 0.45 mmol, 1.5 equiv) was added, and reaction vessel was immersed to oil bath preheated to 100 °C. After 1.5 h, the crude reaction mixture was diluted with Et<sub>2</sub>O (300 mL), washed with 2 M HCl (2 × 100 mL) and saturated NaHCO<sub>3</sub> (100 mL), and dried over

MgSO<sub>4</sub>. After evaporation of solvents under reduced pressure, the crude product was chromatographed on silica gel in gradient hexanes to 10% EtOAc in hexanes to obtain 13d (119 mg, 63%) as a colorless oil. HRMS (ESI) C<sub>33</sub>H<sub>59</sub>N<sub>2</sub>O<sub>4</sub>Si<sub>3</sub> [M + H] calculated 631.3777, found 631.3780. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.16, -0.04, 0.07, 0.08, 0.12, and 0.14 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.84, 0.92, and 0.95 (3  $\times$ s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.80 (dd, 1H,  $J_{gem}$  = 11.1 Hz,  $J_{5'a,4'}$  = 3.2 Hz, H-5'a); 3.91 (dd, 1H,  $J_{gem} = 11.1 \text{ Hz}$ ,  $J_{5'b,4'} = 4.1 \text{ Hz}$ , H-5'b); 4.11 (td,  $J_{4',3'} = J_{4',5'b} = 4.1 \text{ Hz}, J_{4',5'a} = 3.2 \text{ Hz}, \text{H-4'}; 4.15 (t, 1\text{H}, J_{3',4'} = J_{3',2'} = J_{3',2'} = J_{3',2'}$ 4.2 Hz, H-3'); 4.22 (dd, 1H,  $J_{2',1'} = 5.6$  Hz,  $J_{2',3'} = 4.2$  Hz, H-2'); 5.01 (d, 1H,  $J_{1',2'}$  = 5.6 Hz, H-1'); 7.29 (ddd, 1H,  $J_{5,4}$  = 7.2 Hz,  $J_{5,6}$  = 4.8 Hz, *J*<sub>5,3</sub> = 1.4 Hz, H-5-py); 7.72 (bd, 1H, *J*<sub>3,4</sub> = 8.1 Hz, H-3); 7.76 (dt, 1H, *J*<sub>3,4</sub> = 7.9 Hz, *J*<sub>3,5</sub> = *J*<sub>3,6</sub> = 1.3 Hz, H-3-py); 7.79 (ddd, 1H, *J*<sub>4,3</sub> = 8.0 Hz,  $J_{4,5} = 7.1$  Hz,  $J_{4,6} = 1.8$  Hz, H-4-py); 8.31 (dd, 1H,  $J_{4,3} = 8.2$ Hz, J<sub>4,6</sub> = 2.3 Hz, H-4); 8.72 (ddd, 1H, J<sub>6,5</sub> = 4.8 Hz, J<sub>6,4</sub> = 1.8 Hz,  $J_{6,3} = 1.0$  Hz, H-6-py); 9.13 (dd, 1H,  $J_{6,4} = 2.3$  Hz,  $J_{6,3} = 0.8$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.39, -5.33, -4.9, -4.6, and -4.4 (CH<sub>3</sub>Si); 18.0, 18.1, and 18.5 ((CH<sub>3</sub>)<sub>3</sub>C); 25.85, 25.88, and 26.1 ((CH<sub>3</sub>)<sub>3</sub>C); 63.1 (CH<sub>2</sub>-5'); 72.7 (CH-3'); 78.6 (CH-2'); 84.7 (CH-1'); 84.8 (CH-4'); 120.6 (CH-3-py); 121.6 (CH-3); 122.7 (CH-5-py); 133.7 (C-5); 134.8 (CH-4); 137.0 (CH-4-py); 147.2 (C-6); 150.0 (CH-6-py); 154.8 (C-2-py); 160.9 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2858, 1588, 1472, 1464, 1254, 1154, 1120, 1077, 968, 838  $\text{cm}^{-1}$ .

1β-(5-Aminopyridin-2-yl)-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (13e). LiN(SiMe<sub>3</sub>)<sub>2</sub> (0.58 mL, 0.575 mmol, 2 equiv 1 M solution in THF) was added to a flame-dried and argon-purged flask containing 8 (182 mg, 0.288 mmol), Pd<sub>2</sub>(dba)<sub>3</sub>, (13 mg, 0.014 mmol, 5 mol %), and tri-tert-butylphosphonium tetrafluoroborate (17 mg, 0.058 mmol, 20 mol %), and the mixture was stirred at 50 °C for 11 h. After cooling to room temperature, the reaction mixture was diluted with  $Et_2O$  (30 mL), washed with 2 M HCl (10 mL) and 1 M NaOH (15 mL), and dried over MgSO<sub>4</sub>. The crude product was chromatographed on silica gel in gradient hexanes to 17% EtOAc in hexanes to give 13e (103 mg, 63%) as a yellowish oil. HRMS (ESI)  $C_{28}H_{57}N_2O_4Si_3$ : [M + H] calculated 569.3621, found 569.3622. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>): -0.27, -0.13, 0.05, 0.068, 0.071, and 0.08 (6  $\times$  s, 6  $\times$  3H, CH\_3Si); 0.76, 0.89, and 0.90 (3  $\times$  s, 3  $\times$  9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.67 (dd, 1H,  $J_{gem} = 11.1$  Hz,  $J_{5'a,4'} = 3.6$  Hz, H-5'a); 3.72  $(dd, 1H, J_{gem} = 11.1 Hz, J_{5'b,4'} = 4.6 Hz, H-5'b); 3.84 (m, 1H, H-4'); 4.09$ (dd, 1H,  $J_{3',2'} = 4.4$  Hz,  $J_{3',4'} = 3.1$  Hz H-3'); 4.12 (dd, 1H,  $J_{2',1'} = 6.4$  Hz,  $J_{2',3'} = 4.4$  Hz, H-2'); 4.57 (d, 1H,  $J_{1',2'} = 6.4$  Hz, H-1'); 5.25 (s, 2H, NH<sub>2</sub>); 6.86 (dd, 1H, *J*<sub>4,3</sub> = 8.4 Hz, *J*<sub>4,6</sub> = 2.7 Hz, H-4); 7.17 (d, 1H, *J*<sub>3,4</sub> = 8.4 Hz, H-3); 7.85 (d, 1H,  $J_{6,4}$  = 2.7 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): -5.34, -5.31, -4.84, -4.56, -4.48, and -4.41 (CH<sub>3</sub>Si); 17.9, 18.0, and 18.2 ((CH<sub>3</sub>)<sub>3</sub>C); 25.87, 25.93, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.2 (CH<sub>2</sub>-5'); 73.1 (CH-3'); 77.6 (CH-2'); 84.0 and 84.3 (CH-1',4'); 120.1 (CH-4); 122.1 (CH-3); 135.3 (CH-6); 144.4 (C-5); 146.4 (C-2). IR spectrum (CCl<sub>4</sub>): 3481, 3397, 2956, 2930, 2886, 2858, 1616, 1472, 1463, 1389, 1354, 1254, 1135, 1078, 838 cm<sup>-1</sup>

1β-[5-(Dimethylamino)pyridin-2-yl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (13f). Toluene (0.5 mL) and Me<sub>2</sub>NH (1.1 mL, 2.18 mmol, 6 equiv; 2 M solution in THF) were added to a flame-dried and argon-purged flask containing 8 (230 mg, 0.363 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (17 mg, 0.018 mmol, 5 mol %), (2-biphenyl)-di*tert*-butylphosphine (22 mg, 0.073 mmol, 20 mol %), and sodium *tert*butoxide (35 mg, 0.363 mmol, 1 equiv). The resulting mixture was stirred at 60 °C for 3 h, diluted with Et<sub>2</sub>O (50 mL), filtered through a plug of Celite, and concentrated under reduced pressure. The crude product was chromatographed on silica in gradient hexanes to 9% EtOAc in hexanes, to give 13f (152 mg, 70%) as a colorless oil. HRMS (ESI) C<sub>30</sub>H<sub>61</sub>N<sub>2</sub>O<sub>4</sub>Si3: [M + H] calculated 597.3934, found 597.3935. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.22, -0.08, 0.067, 0.075, 0.09, and 0.10 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.80, 0.91, and 0.93 (3 × s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 2.95 (s, 6H,  $(CH_3)_2N); 3.76 (dd, 1H, J_{gem} = 10.9 Hz, J_{5'a,4'} = 3.7 Hz, H-5'a); 3.80 (dd, 1H, J_{gem} = 10.9 Hz, J_{5'b,4'} = 5.0 Hz, H-5'b); 4.02 (dt, 1H, J_{4',5'b} = 4.9 Hz, J_{4',3'} = J_{4',5'a} = 3.6 Hz, H-4'); 4.13 (dd, 1H, J_{3',2'} = 4.4 Hz, J_{3',4'} = 3.4 Hz, H-3'); 4.18 (dd, 1H, J_{2',1'} = 6.1 Hz, J_{2',3'} = 4.3 Hz, H-2'); 4.84 (d, 1H, J_{1',2'} = 6.1 Hz, H-1'); 6.93 (dd, 1H, J_{4,3} = 8.7 Hz, J_{4,6} = 3.1 Hz, H-4); 7.33 (d, 1H, J_{3,4} = 8.7 Hz, H-3); 8.10 (bd, H, J_{6,4} = 3.1 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl_3): -5.41, -5.37, -4.95, -4.60, -4.55, and -4.46 (CH_3Si); 18.02, 18.06, and 18.4 ((CH_3)_3C); 25.84, 25.89, and 26.0 ((CH_3)_3C); 40.3 ((CH_3)_2N); 63.4 (CH_2-5'); 73.1 (CH-3'); 77.8 (CH-2'); 84.3 (CH-1'); 84.7 (CH-4'); 119.1 (CH-4); 122.1 (CH-3); 134.5 (CH-6); 145.6 (C-5); 147.4 (C-2). IR spectrum (CCl_4): 2956, 2929, 2857, 1595, 1592, 1500, 1463, 1361, 1253, 1155, 1140, 1079 cm<sup>-1</sup>.$ 

1β-[5-(Carbamoyl)pyridin-2-yl]-1-deoxy-2,3,5-tri-O-(tertbutyldimethylsilyl)-D-ribofuranose (13g). A flame-dried septum-sealed flask (30 mL) containing 8 (478 mg, 0.755 mmol), Pd(OAc)<sub>2</sub> (17 mg, 0.076 mmol, 5 mol %), Xantphos (87 mg, 0.151 mmol, 10 mol %), and K<sub>3</sub>PO<sub>4</sub> (481 mg, 2.27 mmol, 3 equiv) was evacuated and backfilled with  $CO_{(g)}$ . Then, toluene (3 mL) and  $NH_3$ (6 mL, 3.02 mmol, 4 equiv; 0.5 M solution in dioxane) were added via syringe. The reaction mixture was stirred at room temperature for 5 min and then immersed into a preheated oil bath (80 °C) and vigorously stirred for 6 h. After cooling to the room temperature, Et<sub>2</sub>O (15 mL) was added, and the reaction mixture was filtered through a plug of Celite (eluting with Et<sub>2</sub>O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient hexanes to 25% EtOAc in hexanes to give 13g (335 mg, 74%) as a white solid. HRMS (ESI)  $C_{29}H_{57}N_2O_{5-1}$ Si<sub>3</sub>: [M + H] calculated 597.3570, found 597.3575. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.19, -0.05, 0.062, 0.063, 0.11, and 0.12 ( $6 \times s$ ,  $6 \times s$ ) 3H, CH<sub>3</sub>Si); 0.83, 0.91, and 0.93  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ; 3.78 (dd, 1H,  $J_{\text{gem}} = 11.2 \text{ Hz}$ ,  $J_{5'a,4'} = 2.7 \text{ Hz}$ , H-5'a); 3.90 (dd, 1H,  $J_{\text{gem}} = 11.2$ Hz,  $J_{5'b,4'} = 3.5$  Hz, H-5'b); 4.09 - 4.12 (m, 2H, H-3',4'); 4.16 (dd, 1H,  $J_{2',1'} = 5.6$  Hz,  $J_{2',3'} = 3.9$  Hz, H-2'); 5.00 (d, 1H,  $J_{1',2'} = 5.6$  Hz, H-1'); 5.91 and 6.41 (2 × bs, 2 × 1H, NH<sub>2</sub>); 7.76 (d, 1H,  $J_{3,4}$  = 8.2 Hz, H-3); 8.16 (dd, 1H,  $J_{4,3}$  = 8.2 Hz,  $J_{4,6}$  = 2.3 Hz, H-4); 9.03 (bd, 1H,  $J_{6,4} = 2.3$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.42, -5.38, -5.0, -4.6, and -4.4 (CH<sub>3</sub>Si); 17.97, 18.03, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.79, 25.84, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 62.8 (CH<sub>2</sub>-5'); 72.7 (CH-3'); 78.7 (CH-2'); 84.3 (CH-1'); 85.1 (CH-4'); 121.5 (CH-3); 128.0 (C-5); 136.5 (CH-4); 147.0 (CH-6); 164.1 (C-2); 167.1 (CO). IR spectrum (CCl<sub>4</sub>):2956, 2930, 2858, 1687, 1598, 1472, 1463, 1390, 1362, 1254,  $1155, 1119 \text{ cm}^{-1}$ .

 $1\beta$ -[5-(Dimethylcarbamoyl)pyridin-2-yl]-1-deoxy-2,3,5tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (13h). A flamedried septum-sealed flask containing 8 (551 mg, 0.871 mmol), Pd-(OAc)<sub>2</sub> (9.8 mg, 0.044 mmol, 5 mol %), Xantphos (50 mg, 0.087 mmol, 10 mol %), K<sub>3</sub>PO<sub>4</sub> (1109 mg, 5.22 mmol, 6 equiv), and Me<sub>2</sub>NH · HCl (213 mg, 2.61 mmol, 3 equiv) was evacuated and backfilled with  $CO_{(g)}$ . Then, toluene (3.5 mL) was added, and the reaction mixture was stirred at room temperature for 5 min, immersed into a preheated oil bath (80 °C), and vigorously stirred for 1.5 h under CO atmosphere (baloon). After the completion of the reaction (monitored by TLC, Hexanes/EtOAc 8:2), the mixture was cooled to room temperature, diluted with Et<sub>2</sub>O (20 mL), filtered through a plug of Celite (eluting with Et<sub>2</sub>O), and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient hexanes to 17% ethyl acetate in hexanes, furnishing 13h (435 mg, 80%) as a colorless oil. HRMS (ESI) C<sub>31</sub>H<sub>61</sub>N<sub>2</sub>O<sub>5</sub>Si<sub>3</sub>: [M + H] calculated 625.3883, found 625.3880. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.15, -0.04, 0.059, 0.063, 0.11, and 0.12 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.83, 0.91, and 0.93 (3  $\times$  s, 3  $\times$  9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.00 and 3.12 (2  $\times$  s, 2  $\times$  3H,  $(CH_3)_2N$ ; 3.78 (dd, 1H,  $J_{gem} = 11.2$  Hz,  $J_{5'a,4'} = 2.9$  Hz, H-5'a); 3.90 (dd, 1H,  $J_{gem} = 11.2 \text{ Hz}$ ,  $J_{5'b,4'} = 3.7 \text{ Hz}$ , H-5'b); 4.06 - 4.12 (m, 2H, H-3',4'); 4.16 (dd, 1H,  $J_{2',1'}$  = 5.3 Hz,  $J_{2',3'}$  = 3.8 Hz, H-2'); 4.97 (d, 1H,  $J_{1',2'} = 5.2$  Hz, H-1'); 7.70 (d, 1H,  $J_{3,4} = 8.0$  Hz, H-3); 7.74 (dd, 1H,  $J_{4,3} = 8.0$  Hz,  $J_{4,6} = 2.0$  Hz, H-4); 8.63 (bd, H,  $J_{6,4} = 2.1$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.41, -5.39, -4.9, -4.62, -4.59, and -4.4 (CH<sub>3</sub>Si); 18.00, 18.02, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.81, 25.84, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 35.47 and 39.54 ((CH<sub>3</sub>)<sub>2</sub>N); 62.8 (CH<sub>2</sub>-5'); 72.4 (CH-3'); 78.6 (CH-2'); 84.7 (CH-1',4'); 121.2 (CH-3); 130.9 (C-5); 135.7 (CH-4); 147.0 (CH-6); 161.8 (C-2); 169.1 (CO). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 22858, 1646, 4597, 1472, 1463, 1393, 1255, 1155, 1120, 1083, 878 cm<sup>-1</sup>.

1β-(5-Hydroxypyridin-2-yl)-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (13i). A septum-sealed flask containing 8 (342 mg, 0.540 mmol), Pd<sub>2</sub>bda<sub>3</sub> (12 mg, 0.014 mmol, 2.5 mol %), 2-di-tert-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl (26 mg, 0.054 mmol, 10 mol %) and KOH (91 mg, 1.62 mmol, 3 equiv) was evacuated and backfilled with argon. Then 1,4-dioxane (0.8 mL) and water (0.3 mL) were added. The resulting dark-brown reaction mixture was immersed into preheated oil bath (80 °C) and stirred for 1.5 h. After the completion of the reaction (monitored by TLC, hexanes/EtOAc 10:1), the mixture was cooled to room temperature, diluted with THF (10 mL), filtered through a plug of Celite (eluting with THF), and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient chloroform to 13% ethyl acetate in chloroform, furnishing 13i (227 mg, 73%) as a white foam. HRMS (ESI) C<sub>28</sub>H<sub>56</sub>NO<sub>5</sub>Si<sub>3</sub>: [M + H] calculated 570.3461, found 570.3463. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): -0.29, -0.13, 0.05, 0.07, and 0.08 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.76, 0.891, and 0.895 (3  $\times$  s, 3  $\times$  9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.68 (dd, 1H,  $J_{gem}$  = 11.2 Hz,  $J_{5'a,4'} = 3.6$  Hz, H-5'a); 3.74 (dd, 1H,  $J_{gem} = 11.2$  Hz,  $J_{5'b,4'} = 4.6$  Hz, H-5'b); 3.88 (dt, 1H,  $J_{4',5'b}$  = 4.6 Hz,  $J_{4',5'a}$  =  $J_{4',3'}$  = 3.3 Hz, H-4'); 4.09  $(dd, 1H, J_{3',2'} = 4.4 Hz, J_{3',4'} = 3.1 Hz H-3'); 4.14 (dd, 1H, J_{2',1'} = 6.5 Hz,$  $J_{2',3'} = 4.4 \text{ Hz}, \text{H-}2'); 4.64 \text{ (d, 1H, } J_{1',2'} = 6.5 \text{ Hz}, \text{H-}1'); 7.10 \text{ (dd, 1H, } J_{4,3})$ = 8.5 Hz, *J*<sub>4,6</sub> = 2.8 Hz, H-4); 7.35 (bd, 1H, *J*<sub>3,4</sub> = 8.5 Hz, H-3); 8.04 (dd, 1H,  $J_{6,4}$  = 2.8 Hz,  $J_{6,3}$  = 0.6 Hz, H-6); 9.85 (s, 1H, OH-5). <sup>13</sup>C NMR (125.7 MHz, DMSO-d<sub>6</sub>): -5.32, -5.29, -4.95, -4.55, -4.47, and -4.40 (CH<sub>3</sub>Si); 17.90, 17.99, and 18.2 ((CH<sub>3</sub>)<sub>3</sub>C); 25.85, 25.94, and 26.02 ((CH<sub>3</sub>)<sub>3</sub>C); 63.2 (CH<sub>2</sub>-5'); 73.1 (CH-3'); 77.9 (CH-2'); 83.8 (CH-1'); 84.6 (CH-4'); 122.5 (CH-3,4); 136.9 (CH-6); 150.0 (C-2); 153.3 (C-5). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2858, 1472, 1463, 1255, 1155, 1120, 1077, 838 cm<sup>-1</sup>.

1 $\beta$ -(6-Methylpyridin-3-yl)-2,3,5-tri-*O*-(*tert*-butyldimethylsilyl)-D-ribofuranose (15a). Me<sub>3</sub>Al (0.76 mL, 1.51 mmol, 2 equiv, 2 M in toluene) was added to a vigorously stirred solution of 11 (479 mg, 0.757 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (44 mg, 0.038 mmol, 5 mol %) in THF (11 mL) under argon. The mixture was stirred at 70 °C for 2 h, quenched by pouring into saturated  $NaH_2PO_4$  (50 mL), and extracted to EtOAc (3  $\times$  50 mL). The crude product was chromatographed on silica gel in gradient hexanes to 7.5% EtOAc in hexanes to give 15a (400 mg, 93%) as colorless oil. HRMS (ESI) C29H58NO4Si3: [M + H] calculated 568.3668, found 568.3666. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.44, -0.11, 0.09, 0.10, 0.11, and 0.12 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.81, 0.93, and 0.94  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ; 2.56  $(s, 3H, CH_3)$ ; 3.76  $(dd, 1H, CH_3)$ ; 3.76  $J_{\text{gem}} = 11.0 \text{ Hz}, J_{5'a,4'} = 3.2 \text{ Hz}, \text{H-}5'a); 3.79 \text{ (dd, 1H, } J_{\text{gem}} = 11.0 \text{ Hz},$  $J_{5'b,4'} = 3.6 \text{ Hz}, \text{H-}5'b$ ; 3.86 (dd, 1H,  $J_{2',1'} = 8.0 \text{ Hz}, J_{2',3'} = 4.4 \text{ Hz}, \text{H-}2'$ ); 4.04 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 3.4$  Hz,  $J_{4',3'} = 1.7$  Hz, H-4'); 4.13 (dd, 1H,  $J_{3',2'} = 4.5 \text{ Hz}, J_{3',4'} = 1.7 \text{ Hz}, \text{H-3'}; 4.77 \text{ (d, 1H, } J_{1',2'} = 8.0 \text{ Hz}, \text{H-1'}; 7.12$  $(d,1H, J_{3,4} = 8.0 \text{ Hz}, \text{H-}3); 7.71 \text{ (bd, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 1H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H-}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.47 \text{ (d, 2H, } J_{3,4} = 8.0 \text{ Hz}, \text{H}4); 8.$  $J_{6,4} = 2.2$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.5, -5.4, -5.3, -4.49, -4.47, and -4.40 (CH<sub>3</sub>Si); 17.9, 18.1, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 23.8 (CH<sub>3</sub>); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.7 (CH<sub>2</sub>-5'); 73.9 (CH-3'); 79.4 (CH-2'); 80.5 (CH-1'); 86.4 (CH-4'); 122.9 (CH-3); 133.2 (C-5); 135.1 (CH-4); 147.5 (CH-6); 157.6 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2858, 1605, 1472, 1463, 1257, 1153, 1113, 838 cm<sup>-1</sup>.

 $1\beta$ -(6-Phenylpyridin-3-yl)-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-p-ribofuranose (15b). Compound 11 (458 mg, 0.724 mmol), K<sub>2</sub>CO<sub>3</sub> (221 mg, 1.59 mmol, 2.2 equiv), Pd(PPh<sub>3</sub>)<sub>4</sub> (42 mg, 0.036 mmol, 5 mol %), and PhB(OH)<sub>2</sub> (177 mg, 1.45 mmol, 2 equiv) were dissolved in toluene (15 mL) under argon, and the mixture was stirred at 110 °C for 1.5 h. The reaction mixture was filtered through a plug of Celite and concentrated under reduced pressure. The crude product was chromatographed on silica gel in gradient hexanes to 6% Et<sub>2</sub>O in hexanes to give 15b (437 mg, 95%) as a colorless oil. HRMS (ESI)  $C_{34}H_{60}NO_{4-}$ Si<sub>3</sub>: [M + H] calculated 630.3825, found 630.3823. <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ ): -0.40, -0.09, 0.110, 0.113, 0.13, and 0.15 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.82 and 0.95 (3 × s, 3 × 9H, (CH<sub>3</sub>)<sub>3</sub>C); 3.80 (dd, 1H,  $J_{gem}$  = 11.0 Hz,  $J_{5'a,4'} = 3.2$  Hz, H-5'a); 3.82 (dd, 1H,  $J_{gem} = 11.0$  Hz,  $J_{5'b,4'} = 3.8$ Hz, H-5'b); 3.92 (dd, 1H,  $J_{2',1'}$  = 7.8 Hz,  $J_{2',3'}$  = 4.4 Hz, H-2'); 4.08 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 3.5$  Hz,  $J_{4',3'} = 1.8$  Hz, H-4'); 4.17 (dd, 1H,  $J_{3',2'} = 4.4$ Hz,  $J_{3',4'} = 1.8$  Hz, H-3'); 4.86 (d, 1H,  $J_{1',2'} = 7.8$  Hz, H-1'); 7.41 (m, 1H, H-*p*-Ph); 7.48 (m, 2H, H-*m*-Ph); 7.70 (d, 1H, *J*<sub>3,4</sub> = 8.2 Hz, H-3); 7.88 (m, 1H, H-4); 8.00 (m, 2H, H-o-Ph); 8.68 (d, 1H,  $J_{6,4}$  = 2.2 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.5, -5.4, -5.2, -4.47, -4.45, and -4.40 (CH<sub>3</sub>Si); 17.9, 18.1, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.7 (CH<sub>2</sub>-5'); 73.9 (CH-3'); 79.5 (CH-2'); 80.6 (CH-1'); 86.3 (CH-4'); 120.1 (CH-3); 127.0 (CH-o-Ph); 128.7 (CH-m,p-Ph); 134.7 (C-5); 135.3 (CH-4); 139.4 (C-*i*-Ph); 148.5 (CH-6); 156.9 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 1599, 1565, 1473, 1257, 1153 cm<sup>-1</sup>.

1β-[6-(2-Thienyl)pyridin-3-yl]-1-deoxy-2,3,5-tri-O-(*tert*butyldimethylsilyl)-p-ribofuranose (15c). DMF (12 mL) was added to a flame-dried and argon-purged flask containing 11 (453 mg, 0.716 mmol) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (25 mg, 0.036 mmol, 5 mol %). After 5 min stirring at room temperature, tributyl(thiophen-2-yl)stannane (320 µL, 1.00 mmol, 1.4 equiv) was added, and reaction vessel was immersed to oil bath (110 °C) and stirred for 1.5 h. After cooling to room temperature, the crude reaction mixture was diluted with  $Et_2O(100 \text{ mL})$ , washed with 2 M HCl (2 × 100 mL) and saturated NaHCO<sub>3</sub> (100 mL), and dried over MgSO<sub>4</sub>. After evaporation of solvents under reduced pressure, the crude product was chromatographed on silica gel in gradient hexanes to 6% Et<sub>2</sub>O in hexanes to obtain 15c (370 mg, 81%) as a colorless oil. HRMS (ESI)  $C_{32}H_{58}NSO_4Si_3$ : [M + H] calculated 636.3389, found 636.3387. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.38, -0.09, 0.103, 0.104, 0.12, and 0.14  $(6 \times s, 6 \times 3H, CH_3Si)$ ; 0.83, 0.94, and 0.95  $(3 \times s, 3 \times 9H,$  $(CH_3)_3C$ ; 3.79 (m, 2H, H-5'); 3.90 (dd, 1H,  $J_{2',1'}$  = 7.7 Hz,  $J_{2',3'}$  = 4.4 Hz, H-2'); 4.06 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 3.5$  Hz,  $J_{4',3'} = 2.0$  Hz, H-4'); 4.15 (dd, 1H,  $J_{3',2'}$  = 4.4 Hz,  $J_{3',4'}$  = 1.9 Hz, H-3'); 4.81 (d, 1H,  $J_{1',2'}$  = 7.7 Hz, H-1′); 7.11 (dd, 1H, *J*<sub>4,5</sub> = 5.1 Hz *J*<sub>4,3</sub> = 3.7 Hz, H-4-thienyl); 7.38 (dd, 1H, *J*<sub>5,4</sub> = 5.1 Hz, *J*<sub>5,3</sub> = 1.2 Hz, H-5-thienyl); 7.59 (m, 1H, H-3-thienyl); 7.61 (bd, 1H, J<sub>3,4</sub> = 8.2 Hz, H-3); 7.87 (bd, 1H, J<sub>3,4</sub> = 8.2 Hz, H-4); 8.54 (d, 1H,  $J_{6,4}$  = 2.2 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.5, -5.4, -5.1, -4.47, -4.45, and -4.42 (CH<sub>3</sub>Si); 17.9, 18.1, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.7 (CH<sub>2</sub>-5'); 73.8 (CH-3'); 79.4 (CH-2'); 80.7 (CH-1'); 86.2 (CH-4'); 118.3 (CH-3); 124.4 (CH-3-thienyl); 127.3 (CH-5-thienyl); 128.0 (CH-4-thienyl); 134.6 (C-5); 135.1 (CH-4); 144.9 (C-2-thienyl); 148.3 (CH-6); 152.1 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2585, 1730, 1598, 1473, 1257, 1115 cm<sup>-1</sup>.

1β-[6-(2-Pyridyl)pyridin-3-yl]-1-deoxy-2,3,5-tri-O-(tertbutyldimethylsilyl)-D-ribofuranose (15d). DMF (6 mL) was added to a flame-dried and argon-purged flask containing 11 (366 mg, 0.578 mmol) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (20 mg, 0.029 mmol, 5 mol %). After 5 min stirring at room temperature, tributyl(pyridin-2-yl)stannane (280  $\mu$ L, 0.867 mmol, 1.5 equiv) was added, and the reaction vessel was immersed to oil bath preheated to 80 °C. After 4.5 h, crude reaction mixture was diluted with Et<sub>2</sub>O (300 mL), washed with 2 M HCl (2 × 100 mL) and sat. NaHCO<sub>3</sub> (100 mL), and dried over MgSO<sub>4</sub>. After evaporation of solvents under reduced pressure, crude product was chromatographed on silica gel in gradient hexanes to 6% EtOAc in hexanes to obtain 15d (186 mg,

51%) as a colorless oil. HRMS (ESI) C<sub>33</sub>H<sub>59</sub>N<sub>2</sub>O<sub>4</sub>Si<sub>3</sub> [M + H] calculated 631.3777, found 631.3775. <sup>1</sup>H NMR (500 MHz, DMSO $d_6$ ): -0.49, -0.13, 0.10, 0.116, 0.122, and 0.14 (6 × s, 6 × 3H, CH<sub>3</sub>Si); 0.77, 0.92, and 0.93  $(3 \times s, 3 \times 9H, (CH_3)_3C)$ ; 3.78 (dd, 1H,  $J_{\text{gem}} = 11.2 \text{ Hz}$ ,  $J_{5'a,4'} = 3.1 \text{ Hz}$ , H-5'a); 3.83 (dd, 1H,  $J_{\text{gem}} = 11.2$ Hz,  $J_{5'b,4'} = 4.2$  Hz, H-5'b); 3.99 (bddd,  $J_{4',5'b} = 4.2$  Hz,  $J_{4',5'a} = 3.0$ Hz,  $J_{4',3'} = 1.4$  Hz, H-4'); 4.00 (dd, 1H,  $J_{2',1'} = 8.2$  Hz,  $J_{2',3'} = 4.4$  Hz, H-2'; 4.14 (dd, 1H,  $J_{3',2'}$  = 4.4 Hz,  $J_{3',4'}$  = 1.4 Hz, H-3'); 4.74 (d, 1H,  $J_{1',2'} = 8.2 \text{ Hz}, \text{H-1'}$ ; 7.45 (ddd, 1H,  $J_{5,4} = 7.5 \text{ Hz}, J_{5,6} = 4.8 \text{ Hz}, J_{5,3} = 1.5 \text{ Hz}$ 1.2 Hz, H-5-py); 7.94 (btd, 1H,  $J_{4,3} = J_{4,5} = 7.7$  Hz,  $J_{4,6} = 1.9$  Hz, H-4py); 7.95 (bdd, 1H, *J*<sub>4,3</sub> = 8.2 Hz, *J*<sub>4,6</sub> = 2.2 Hz, H-4); 8.35 (dd, 1H,  $J_{3,4} = 8.2 \text{ Hz}, J_{3,6} = 0.8 \text{ Hz}, \text{H-3}$ ; 8.38 (dt, 1H,  $J_{3,4} = 8.0 \text{ Hz}, J_{3,5} =$  $J_{3,6} = 1.1$  Hz, H-3-py); 8.65 (bd, 1H,  $J_{6,4} = 2.3$  Hz, H-6); 8.68 (ddd, 1H,  $J_{6,5} = 4.7$  Hz,  $J_{6,4} = 1.8$  Hz,  $J_{6,3} = 0.9$  Hz, H-6-py). <sup>13</sup>C NMR (125.7 MHz, DMSO-d<sub>6</sub>): -5.42, -5.34, -5.32, -4.50, -4.45, and -4.36 (CH<sub>3</sub>Si); 17.7, 18.0, and 18.2 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.5 (CH<sub>2</sub>-5'); 74.1 (CH-3'); 79.1 (CH-2'); 80.1 (CH-1'); 86.2 (CH-4'); 120.0 (CH-3); 120.6 (CH-3-py); 124.4 (CH-5py); 135.6 (CH-4); 136.4 (C-5); 137.5 (CH-4-py); 148.3 (CH-6); 149.5 (CH-6-py); 155.2 and 155.3 (C-2, C-2-py). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 2858, 1591, 1577, 1560, 1472, 1462, 1255, 1153, 1113  $\text{cm}^{-1}$ .

1*β*-(6-Aminopyridin-3-yl)-1-deoxy-2,3,5-tri-*O*-(*tert*-butyldimethylsilyl)-D-ribofuranose (15e). LiN(SiMe<sub>3</sub>)<sub>2</sub> (1.1 mL, 1.1 mmol, 1.5 equiv 1 M solution in THF) was added to a flame-dried and argon-purged flask containing 11 (464 mg, 0.733 mmol), Pd<sub>2</sub>(dba)<sub>3</sub>, (17 mg, 0.018 mmol, 2.5 mol %), and tri-tert-butylphosphonium tetrafluoroborate (26 mg, 0.073 mmol, 10 mol %), and the mixture was stirred at 50 °C for 5 h. After cooling to room temperature, the reaction mixture was diluted with Et<sub>2</sub>O (60 mL), washed with 2 M HCl (2  $\times$ 30 mL) and 1 M NaOH (30 mL), and dried over MgSO<sub>4</sub>. The crude product was chromatographed on silica gel in gradient chloroform to 1.2% MeOH in chloroform to give 15e (367 mg, 88%) as a yellowish oil. HRMS (ESI) C<sub>28</sub>H<sub>57</sub>N<sub>2</sub>O<sub>4</sub>Si<sub>3</sub>: [M + H] calculated 569.3621, found 569.3620. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.36, -0.09, 0.087, 0.093, 0.10, and 0.11 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.81, 0.930, and 0.933 (3  $\times$  s, 3  $\times$ 9H,  $(CH_3)_3C$ ; 3.71 – 3.79 (m, 2H, H-5'); 3.84 (dd, 1H,  $J_{2',1'}$  = 8.1 Hz,  $J_{2',3'} = 4.5 \text{ Hz}, \text{H-2'}$ ; 4.00 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 3.4 \text{ Hz}, J_{4',3'} = 1.6 \text{ Hz}$ , H-4'); 4.11 (dd, 1H,  $J_{3',2'}$  = 4.5 Hz,  $J_{3',4'}$  = 1.6 Hz, H-3'); 4.66 (d, 1H,  $J_{1',2'} = 8.1$  Hz, H-1'); 4.89 (bs, 2H, NH<sub>2</sub>); 6.55 (dd, 1H,  $J_{3,4} = 8.6$  Hz,  $J_{3,6} = 0.6$  Hz, H-3); 7.61 (dd, 1H,  $J_{4,3} = 8.6$  Hz,  $J_{4,6} = 2.3$  Hz, H-4); 7.99 (bd, 1H,  $J_{6,4}$  = 2.2 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.5, -5.4, -5.1, -4.48, -4.44, and -4.41 (CH<sub>3</sub>Si); 17.9, 18.1, and 18.4 ((CH<sub>3</sub>)<sub>3</sub>C); 25.8, 25.9, and 26.0 ((CH<sub>3</sub>)<sub>3</sub>C); 63.8 (CH<sub>2</sub>-5'); 74.0 (CH-3'); 79.0 (CH-2'); 80.4 (CH-1'); 86.2 (CH-4'); 109.1 (CH-3); 126.1 (C-5); 137.7 (CH-4); 144.6 (CH-6); 157.5 (C-2). IR spectrum (CCl<sub>4</sub>): 34813509, 3408, 2956, 2930, 2858, 1616, 1500, 1257, 1154 cm<sup>-</sup>

1*β*-[6-(Dimethylamino)pyridin-3-yl]-1-deoxy-2,3,5-tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (15f). Me<sub>2</sub>NH (1.6 mL, 3.13 mmol, 7 equiv; 2 M solution in THF) was added to a flame-dried and argon-purged flask containing 11 (283 mg, 0.447 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (10 mg, 0.011 mmol, 2.5 mol %), (2-biphenyl)-di-tert-butylphosphine (14 mg, 0.045 mmol, 10 mol %), and sodium tert-butoxide (43 mg, 0.447 mmol, 1 equiv). The resulting mixture was stirred at 65 °C for 4.5 h, diluted with Et<sub>2</sub>O (75 mL), filtered through a plug of Celite, and concentrated under reduced pressure. The crude product was chromatographed on silica in gradient hexanes to 6% EtOAc in hexanes to give 15f (237 mg, 89%) as colorless oil. HRMS (ESI)  $C_{30}H_{61}N_2O_4Si_3$ : [M + H] calculated 597.3934, found 597. 3933.<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): -0.41, -0.14, 0.08, 0.09, and 0.10 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.76, 0.906, and 0.909  $(3 \times s, 3 \times 9H, (CH_3)_3C); 2.99 (s, 6H, (CH_3)_2N); 3.70 (dd, 1H)$  $J_{\text{gem}} = 11.0 \text{ Hz}, J_{5'a,4'} = 3.5 \text{ Hz}, \text{H-5'a}; 3.73 \text{ (dd, 1H, } J_{\text{gem}} = 11.1 \text{ Hz}$ 

Hz,  $J_{5'b,4'} = 4.2$  Hz, H-5'b); 3.86 (btd, 1H,  $J_{4',5'a} = J_{4',5'b} = 3.8$  Hz,  $J_{4',3'} = 1.6$  Hz, H-4'); 3.91 (dd, 1H,  $J_{2',1'} = 8.1$  Hz,  $J_{2',3'} = 4.5$  Hz, H-2'); 4.09 (dd, 1H,  $J_{3',2'} = 4.5$  Hz,  $J_{3',4'} = 1.6$  Hz, H-3'); 4.49 (d, 1H,  $J_{1',2'} = 8.1$  Hz, H-1'); 6.59 (d, 1H,  $J_{3,4} = 8.8$  Hz, H-3); 7.49 (dd, 1H,  $J_{4,3} = 8.8$  Hz,  $J_{4,6} = 2.4$  Hz, H-4); 7.99 (d, 1H,  $J_{6,4} =$ 2.4 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): -5.4, -5.3, -5.0, -4.46, -4.44, and -4.40 (CH<sub>3</sub>Si); 17.8, 18.0, and 18.2 ((CH<sub>3</sub>)<sub>3</sub>C); 25.82, 25.95, and 25.99 ((CH<sub>3</sub>)<sub>3</sub>C); 37.9 ((CH<sub>3</sub>)<sub>2</sub>N) 63.6 (CH<sub>2</sub>-5'); 73.9 (CH-3'); 78.3 (CH-2'); 80.5 (CH-1'); 85.4 (CH-4'); 105.4 (CH-3); 122.5 (C-5); 136.1 (CH-4); 146.9 (CH-6); 159.3 (C-2). IR spectrum (CCl<sub>4</sub>): 2955, 2930, 1922, 1611, 1563, 1514, 1472, 1463, 1256, 1151 cm<sup>-1</sup>.

1 $\beta$ -[6-(Carbamoyl)pyridin-3-yl]-1-deoxy-2,3,5-tri-O-(*tert*butyldimethylsilyl)-D-ribofuranose (15g). A flame-dried septum-sealed flask (30 mL) containing 11 (304 mg, 0.480 mmol), Pd(OAc)<sub>2</sub> (5.4 mg, 0.024 mmol, 5 mol %), Xantphos (28 mg, 0.048 mmol, 10 mol %), and K<sub>3</sub>PO<sub>4</sub> (306 mg, 1.44 mmol, 3 equiv) was evacuated and backfilled with CO(g). Then, toluene (0.5 mL) and  $NH_3$ (3.8 mL, 1.92 mmol, 4 equiv; 0.5 M solution in 1,4-dioxane) were added via syringe. The reaction mixture was stirred at room temperature for 5 min, immersed into a preheated oil bath (80 °C), and vigorously stirred for 2 h. After cooling to the room temperature, Et<sub>2</sub>O (20 mL) was added, and the reaction mixture was filtered through a plug of Celite (eluting with Et<sub>2</sub>O) and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient chloroform to 7.4% EtOAc in chloroform to give 15g (233 mg, 81%) as a white foam. HRMS (ESI)  $C_{29}H_{57}N_2O_5Si_3{:}$ [M + H] calculated 597.3570, found 597.3573. <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ ): -0.49, -0.10, 0.10, 0.11, 0.12, and 0.13 (6 × s, 6 × 3H,  $CH_3Si$ ); 0.81, 0.93, and 0.94 (3 × s, 3 × 9H, ( $CH_3$ )3C); 3.78 (dd, 1H,  $J_{\text{gem}} = 11.1 \text{ Hz}, J_{5'a,4'} = 2.7 \text{ Hz}, \text{H-}5'a); 3.82 \text{ (dd, 1H, } J_{\text{gem}} = 11.1 \text{ Hz},$  $J_{5'b,4'} = 3.6$  Hz, H-5'b); 3.88 (dd, 1H,  $J_{2',1'} = 8.2$  Hz,  $J_{2',3'} = 4.4$  Hz, H-2'); 4.08 (ddd, 1H,  $J_{4',5'b} = 3.6$  Hz,  $J_{4',5'a} = 2.7$  Hz,  $J_{4',3'} = 1.4$  Hz, H-4'); 4.14 (dd, 1H,  $J_{3',2'}$  = 4.4 Hz,  $J_{3',4'}$  = 1.5 Hz, H-3'); 4.87 (d, 1H,  $J_{1',2'}$  = 8.2 Hz, H-1'); 5.62 and 7.97 (2 × m, 2 × 1H, NH<sub>2</sub>); 8.00 (bdd, 1H,  $J_{4,3}$  = 8.0 Hz,  $J_{4,6}$  = 2.2 Hz, H-4); 8.19 (dd, 1H,  $J_{3,4}$  = 8.0 Hz,  $J_{3,6}$  = 0.8 Hz, H-3); 8.59 (bd, 1H,  $J_{6,4}$  = 2.3 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.54, -5.43, -5.35, -4.47, -4.46, and -4.35 (CH<sub>3</sub>Si); 17.86, 18.05, and 18.34 ((CH<sub>3</sub>)<sub>3</sub>C); 25.77, 25.85, and 25.97 ((CH3)<sub>3</sub>C); 63.6 (CH2-5'); 74.1 (CH-3'); 79.7 (CH-2'); 80.3 (CH-1'); 86.9 (CH-4'); 122.3 (CH-3); 135.8 (CH-4); 140.2 (C-5); 146.7 (CH-6); 148.6 (C-2); 166.4 (CO). IR spectrum (CCl<sub>4</sub>): 3528, 3458, 3401, 3277, 3199, 3148, 1700, 1597, 1575, 1556, 1409, 1257, 1153, 1113  $\mathrm{cm}^{-1}$ 

1 $\beta$ -[5-(Dimethylcarbamoyl)pyridin-2-yl]-1-deoxy-2,3,5tri-O-(tert-butyldimethylsilyl)-D-ribofuranose (15h). A flamedried septum-sealed flask containing 11 (350 mg, 0.553 mmol), Pd-(OAc)<sub>2</sub> (6.2 mg, 0.028 mmol, 5 mol %), Xantphos (32 mg, 0.055 mmol, 10 mol %), K<sub>3</sub>PO<sub>4</sub> (352 mg, 1.66 mmol, 3 equiv), and Me<sub>2</sub>NH·HCl (1.1 mL, 2.21 mmol, 4 equiv) was evacuated and backfilled with  $CO_{(g)}$ . Then, toluene (4.4 mL) was added, and the reaction mixture was stirred at room temperature for 5 min, immersed into a preheated oil bath (80 °C), and vigorously stirred for 3 h under CO atmosphere (balloon). After the completion of the reaction (monitored by TLC, hexanes/ EtOAc 8:2), the mixture was cooled to room temperature, diluted with Et<sub>2</sub>O (20 mL), filtered through a plug of Celite (eluting with Et<sub>2</sub>O), and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient chloroform to 14% ethyl acetate in chloroform furnishing 15h (728 mg, 76%) as colorless oil. HRMS (ESI) C<sub>31</sub>H<sub>61</sub>N<sub>2</sub>O<sub>5</sub>Si<sub>3</sub>: [M + H] calculated 625.3883, found 625.3883. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.43, -0.09, 0.097, 0.102, 0.11, and 0.12 (6  $\times$  s, 6  $\times$  3H, CH<sub>3</sub>Si); 0.81, 0.92, and 0.94 (3  $\times$  s, 3  $\times$ 9H,  $(CH_3)_3C$ ; 3.06 and 3.13  $(2 \times s, 2 \times 3H, (CH_3)_2N)$ ; 3.77 (dd, 1H,  $J_{\text{gem}} = 11.0 \text{ Hz}, J_{5'a,4'} = 2.8 \text{ Hz}, \text{H-5'a}$ ; 3.81 (dd, 1H,  $J_{\text{gem}} = 11.0 \text{ Hz}$ , 
$$\begin{split} J_{5'b,4'} &= 3.7 \; \text{Hz}, \text{H-5'b}); \ 3.88 \; (\text{dd}, 1\text{H}, J_{2',1'} = 8.0 \; \text{Hz}, J_{2',3'} = 4.4 \; \text{Hz}, \text{H-2'}); \\ 4.07 \; (\text{ddd}, 1\text{H}, J_{4',5'b} = 3.7 \; \text{Hz}, J_{4',5'a} = 2.8 \; \text{Hz}, J_{4',3'} = 1.6 \; \text{Hz}, \text{H-4'}); \ 4.14 \; (\text{dd}, 1\text{H}, J_{3',2'} = 4.4 \; \text{Hz}, J_{3',4'} = 1.6 \; \text{Hz}, \text{H-3'}); \ 4.85 \; (\text{d}, 1\text{H}, J_{1',2'} = 8.0 \; \text{Hz}, \\ \text{H-1'}); \ 7.64 \; (\text{dd}, 1\text{H}, J_{3,4} = 8.0 \; \text{Hz}, J_{3,6} = 0.9 \; \text{Hz}, \text{H-3}); \ 7.95 \; (\text{dd}, 1\text{H}, J_{4,3} = 8.1 \; \text{Hz}, J_{4,6} = 2.2 \; \text{Hz}, \text{H-4}); \ 8.60 \; (\text{bd}, 1\text{H}, J_{6,4} = 2.3 \; \text{Hz}, \text{H-6}). \ ^{13}\text{C} \; \text{NMR} \\ (125.7 \; \text{MHz}, \text{CDCl}_3): -5.54, -5.43, -5.26, -4.47, -4.45, \; \text{and} -4.36 \; (\text{CH}_3\text{Si}); \ 17.89, \; 18.04, \; \text{and} \; 18.33 \; ((\text{CH}_3)_3\text{C}); \ 25.78, \; 25.85, \; \text{and} \; 25.97 \; ((\text{CH}_3)_3\text{C}); \; 35.8 \; \text{and} \; 39.0 \; (\text{CH}_3)_2\text{N}); \ 63.6 \; (\text{CH}_2\text{-5'}); \; 74.0 \; (\text{CH-3'}); \\ 79.6 \; (\text{CH-2'}); \; 80.3 \; (\text{CH-1'}); \; 86.7 \; (\text{CH-4'}); \; 123.4 \; (\text{CH-3}); \; 135.9 \; (\text{CH-4}); \; 137.8 \; (\text{C-5}); \; 146.2 \; (\text{CH-6}); \; 153.2 \; (\text{C-2}); \; 168.3 \; (\text{CO}). \; \text{IR spectrum} \; (\text{CCl}_4): \; 2955, \; 2930, \; 2858, \; 1642, \; 1505, \; 1472, \; 1463, \; 1407, \; 1257, \\ 1153 \; \text{cm}^{-1}. \end{split}$$

1β-(6-Oxo-1H-pyridin-3-yl)-1-deoxy-2,3,5-tri-O-(*tert*-butyldimethylsilyl)-D-ribofuranose (15i). Septum-sealed flask containing 11 (430 mg, 0.679 mmol), Pd<sub>2</sub>dba<sub>3</sub> (16 mg, 0.017 mmol, 2.5 mol %), 2-di-tert-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropylbiphenyl (33 mg, 0.068 mmol, 10 mol %), and KOH (114 mg, 2.03 mmol, 3 equiv) was evacuated and backfilled with argon. Then 1,4-dioxane (1 mL) and water (0.3 mL) were added. The resulting dark-brown reaction mixture was immersed into preheated oil bath (80 °C) and stirred for 4 h. After the completion of the reaction (monitored by TLC, hexanes/EtOAc 10:1), the mixture was cooled to room temperature, diluted with THF (20 mL), filtered through a plug of Celite (eluting with THF), and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel in gradient chloroform to 36% ethyl acetate in chloroform furnishing 15i (306 mg, 79%) as a white foam. HRMS (ESI) C<sub>28</sub>H<sub>56</sub>NO<sub>5</sub>Si<sub>3</sub>: [M + H] calculated 570.3461, found 570.3460. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): -0.27, -0.07, 0.075, 0.080, 0.095, and 0.104 (6  $\times$  s, 6  $\times$  3H, CH\_3Si); 0.81, 0.91, and 0.92  $(3 \times s, 3 \times 9H, (CH_3)_3C); 3.69 (dd, 1H, J_{gem} = 11.0 Hz, J_{5'a,4'} = 4.0 Hz,$ H-5'a); 3.72 (dd, 1H,  $J_{gem} = 11.0 \text{ Hz}$ ,  $J_{5'b,4'} = 3.0 \text{ Hz}$ , H-5'b); 3.82 (dd, 1H,  $J_{2',1'} = 8.1$  Hz,  $J_{2',3'} = 4.4$  Hz, H-2'); 3.97 (bddd, 1H,  $J_{4',5'a} = 4.0$  Hz,  $J_{4',5'b} = 3.0 \text{ Hz}, J_{4',3'} = 1.4 \text{ Hz}, \text{H-4}'$ ; 4.09 (dd, 1H,  $J_{3',2'} = 4.5 \text{ Hz}, J_{3',4'} =$ 1.4 Hz, H-3'); 4.53 (d, 1H,  $J_{1',2'}$  = 8.1 Hz, H-1'); 6.55 (d, 1H,  $J_{3,4}$  = 9.4 Hz, H-3); 7.35 (bd, 1H, *J*<sub>6,4</sub> = 2.5 Hz, H-6), 7.61 (dd, 1H, *J*<sub>4,3</sub> = 9.4 Hz,  $J_{4,6} = 2.5$  Hz, H-4). <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>): -5.55, -5.47, -4.97, -4.53, -4.41, and -4.39 (CH<sub>3</sub>Si); 17.9, 18.0, and 18.3 ((CH<sub>3</sub>)<sub>3</sub>C); 25.78, 25.83, and 25.9 ((CH<sub>3</sub>)<sub>3</sub>C); 63.8 (CH<sub>2</sub>-5'); 74.0 (CH-3'); 78.2 (CH-2'); 79.8 (CH-1'); 86.2 (CH-4'); 119.4 (C-5); 120.0 (CH-3); 132.7 (CH-6); 140.8 (CH-4); 165.4 (C-2). IR spectrum (CCl<sub>4</sub>): 2956, 2930, 1665, 1631, 1554, 1472, 1257, 838 cm<sup>-1</sup>

General Procedure for the Deprotection of TBS Group. Method A.  $Et_3N \cdot 3HF$  (98  $\mu$ L, 1.00 mmol, 6 equiv) was added to the solution of silylated compound **13a**-h, **15a**-d,f,h (0.10 mmol) in THF (1.00 mL), and the resulting mixture was stirred at 40 °C for 2 days. After the reaction was complete (monitored by TLC eluted in CHCl<sub>3</sub>/MeOH 8:2), solvent was removed under reduced pressure, the crude product was dissolved in water, and solid NaHCO<sub>3</sub> was added until pH 8. Solvents were removed under reduced pressure, and the crude product purified by reversed-phase chromatography (H<sub>2</sub>O/MeOH as an eluent) to obtain free C-ribonucleosides **14a**-h, **16a**-d,f,h.

General Procedure for the Deprotection of TBS Group. Method B.  $Et_3N \cdot 3HF$  (98  $\mu$ L, 1.00 mmol, 6 equiv) was added to the solution of silylated compound 13i, 16g (0.10 mmol) in THF (1.00 mL), and the resulting mixture was stirred at 40 °C for 2 days. After the reaction was complete (monitored by TLC eluted in CHCl<sub>3</sub>/MeOH 8:2), solvent was removed under reduced pressure, the crude product was dissolved in water, and solid NaHCO<sub>3</sub> was added until pH 8. The solution was then passed through a column packed with Dowex 50 in H<sup>+</sup> cycle, and the column was washed with 250 mL of water followed by 100 mL of 25% aqueous ammonia. The resulting ammonia fraction was concentrated under reduced pressure, and crude product was purified by reversed-phase chromatography (H<sub>2</sub>O/MeOH) to obtain free C-ribonucleosides 14i.

 $1\beta$ -(5-Methylpyridin-2-yl)-1-deoxy-D-ribofuranose (14a). Compound 14a was prepared from 13a (420 mg, 0.739 mmol) according to general procedure (Method A), in 83% yield as a white solid. Crystallization from EtOAc/MeOH furnished colorless crystals: mp 141-142 °C. HRMS (ESI) C<sub>11</sub>H<sub>16</sub>NO<sub>4</sub>: [M + H] calculated 226.1074, found 226.1074. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 2.28 (s, 3H, CH<sub>3</sub>-5); 3.51 (ddd, 1H,  $J_{gem} = 11.8 \text{ Hz}$ ,  $J_{5'a,OH} = 6.3 \text{ Hz}$ ,  $J_{5'a,4'} = 4.3 \text{ Hz}$ , H-5'a); 3.64 (ddd, 1H,  $J_{gem} = 11.8$  Hz,  $J_{5'b,OH} = 5.0$  Hz,  $J_{5'b,4'} = 3.6$  Hz, H-5'b); 3.84 (bddd, 1H,  $J_{4',3'}$  = 5.6 Hz,  $J_{4',5'a}$  = 4.2 Hz,  $J_{4',5'b}$  = 3.6 Hz, H-4'); 3.88  $(q, 1H, J_{3',2'} = J_{3',4'} = J_{3',OH} = 5.3 \text{ Hz H-3'}; 3.97 (dt, 1H, J_{2',OH} = 5.7 \text{ Hz},$  $J_{2',1'} = J_{2',3'} = 4.9 \text{ Hz}, \text{H-2'}$ ; 4.68 (d, 1H,  $J_{1',2'} = 4.7 \text{ Hz}, \text{H-1'}$ ); 4.83 (d, 1H,  $J_{OH,3'} = 5.6$  Hz, OH-3'); 4.96 (dd, 1H,  $J_{OH,5'a} = 6.3$  Hz,  $J_{OH,5'b} = 5.0$ Hz, OH-5'); 5.01 (d, 1H, J<sub>OH,2'</sub> = 5.7 Hz, OH-2'); 7.42 (d, 1H, J<sub>3,4</sub> = 7.9 Hz, H-3); 7.58 (bdd, 1H, *J*<sub>4,3</sub> = 7.9 Hz, *J*<sub>4,6</sub> = 2.3 Hz, H-4); 8.34 (bd, 1H,  $J_{6,4} = 2.3 \text{ Hz}, \text{H-6}$ ). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 17.7 (CH<sub>3</sub>-5); 62.0 (CH<sub>2</sub>-5'); 71.2 (CH-3'); 76.7 (CH-2'); 84.4 (CH-4'); 85.3 (CH-1'); 121.0 (CH-3); 132.0 (C-5); 137.2 (CH-4); 149.0 (CH-6); 157.8 (C-2). IR spectrum (KBr): 2927, 2874, 1607, 1577, 1493, 1384, 1115, 1052, 830 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -31.4$  (c 2.26, MeOH). Anal. Calcd for C11H15NO4: C, 58.66; H, 6.71; N, 6.22. Found: C, 58.52; H, 6.67; N, 6.09.

 $1\beta$ -(5-Phenylpyridin-2-yl)-1-deoxy-D-ribofuranose (14b). Compound 14b was prepared from 13b (416 mg, 0.660 mmol) according to general procedure (Method A), in 80% yield as a white solid which crystallized from EtOAc/MeOH as a white cotton-like solid: mp 132-134 °C. HRMS (ESI) C16H18NO4: [M + H] calculated 288.1230, found 288.1230. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>): 3.55 (bdt, 1H,  $J_{gem} = 11.8$  Hz,  $J_{5'a,4'} = J_{5'a,OH} = 4.5$  Hz, H-5'a); 3.67 (bdt, 1H,  $J_{\text{gem}} = 11.8 \text{ Hz}$ ,  $J_{5'b,4'} = J_{5'b,OH} = 3.5 \text{ Hz}$ , H-5'b); 3.88 (bddd,  $J_{4',3'} =$ 5.5 Hz,  $J_{4',5'a} = 4.2$  Hz,  $J_{4',5'b} = 3.7$  Hz, H-4'); 3.93 (bt, 1H,  $J_{3',4'} = J_{3',2'} =$ 5.2 Hz, H-3'; 4.05 (m, 1H, H-2');  $4.77 (d, 1\text{H}, J_{1',2'} = 4.9 \text{ Hz}, \text{H-1'})$ ; 4.88(m, 1H, OH-3'); 4.95 (m, 1H, OH-5'); 5.09 (m, 1H, OH-2'); 7.42 (m, 1H, H-*p*-Ph); 7.50 (m, 2H, H-*m*-Ph); 7.65 (bd, 1H, *J*<sub>3,4</sub> = 8.2 Hz, H-3); 7.73 (m, 2H, H-o-Ph); 8.06 (dd, 1H,  $J_{4,3} = 8.2$  Hz,  $J_{4,6} = 2.4$  Hz, H-4); 8.83 (dd, 1H,  $J_{6,4}$  = 2.4 Hz,  $J_{6,3}$  = 0.9 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 61.9 (CH<sub>2</sub>-5'); 71.2 (CH-3'); 76.8 (CH-2'); 84.6 (CH-4'); 85.3 (CH-1'); 121.5 (CH-3); 127.0 (CH-o-Ph); 128.2 (CH-p-Ph); 129.3 (CH-m-Ph); 134.7 (C-5); 134.9 (CH-4); 137.2 (C-i-Ph); 146.9 (C-6); 159.8 (C-2). IR spectrum (KBr): 3369, 2926, 2872, 1603, 1482, 1454, 1372, 1355, 1312, 1207, 1109, 1056 cm<sup>-1</sup>.  $[\alpha]^{20}{}_{\rm D} = -38.7 (c 2.40, c 2.40)$ MeOH). Anal. Calcd for C<sub>16</sub>H<sub>17</sub>NO<sub>4</sub>: C, 66.89; H, 5.96; N, 4.88. Found: C, 66.79; H, 5.84; N, 4.78.

 $1\beta$ -[5-(2-Thienyl)pyridin-2-yl]-1-deoxy-D-ribofuranose (14c). Compound 14c was prepared from 13c (450 mg, 0.707 mmol) according to general procedure (Method A), in 83% yield, as a white solid, which after lyophilization furnished a white hygroscopic powder. Crystallization from EtOAc/MeOH yielded a white cotton-like solid: mp 155-156 °C. HRMS (ESI) C<sub>14</sub>H<sub>16</sub>NO<sub>4</sub>S: [M + H] calculated 294.0795, found 294.0795. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 3.54 (ddd, 1H, *J*<sub>gem</sub> = 11.8 Hz, *J*<sub>5'a,OH</sub> = 6.1 Hz,  $J_{5'a,4'}$  = 4.3 Hz, H-5'a); 3.66 (ddd, 1H,  $J_{gem}$  = 11.8 Hz,  $J_{5'b,OH}$  = 5.2 Hz,  $J_{5'b,4'} = 3.5 \text{ Hz}, \text{H-}5'b$ ; 3.87 (bddd, 1H,  $J_{4',3'} = 5.5 \text{ Hz}, J_{4',5'a} = 4.2 \text{ Hz}, J_{4',5'b} =$ 3.6 Hz, H-4'); 3.91 (bq, 1H,  $J_{3',2'} = J_{3',4'} = J_{3',OH} = 5.3$  Hz, H-3'); 4.02 (bdt, 1H,  $J_{2',3'} = J_{2',OH} = 5.5$  Hz,  $J_{2',1'} = 4.9$  Hz, H-2'); 4.74 (d, 1H,  $J_{1',2'} = 4.8$  Hz, H-1'); 4.88 (d, 1H,  $J_{OH,3'}$  = 5.5 Hz, OH-3'); 4.92 (t, 1H,  $J_{OH,5'a}$  =  $J_{OH,5'b}$  = 5.6 Hz, OH-5'); 5.09 (d, 1H,  $J_{OH,2'}$  = 5.7 Hz, OH-2'); 7.19 (dd, 1H,  $J_{4,5}$  = 5.0 Hz, *J*<sub>4,3</sub> = 3.7 Hz, H-4-thienyl); 7.61 (bd, 1H, *J*<sub>3,4</sub> = 8.2 Hz, H-3); 7.63 (dd, 1H,  $J_{3,4} = 3.7$  Hz,  $J_{3,5} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz, H-3-thienyl); 7.64 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.1$  Hz,  $J_{5,4} = 5.0$  Hz,  $J_{5,5} = 1.1$  Hz,  $J_{5,5} = 1.1$  Hz,  $J_{5,4} = 5.0$  Hz,  $J_{5,5} = 1.1$  H 1.1 Hz, H-5-thienyl); 8.03 (dd, 1H, *J*<sub>4,3</sub> = 8.2 Hz, *J*<sub>4,6</sub> = 2.4 Hz, H-4); 8.83 (dd, 1H,  $J_{6,4}$  = 2.4 Hz,  $J_{6,3}$  = 0.9 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSOd<sub>6</sub>): 61.9 (CH<sub>2</sub>-5'); 71.2 (CH-3'); 76.8 (CH-2'); 84.5 (CH-4'); 85.3 (CH-1'); 121.7 (CH-3); 125.1 (CH-3-thienyl); 126.9 (CH-5-thienyl); 128.9 (CH-4-thienyl); 133.5 (CH-4); 139.7 (C-5); 140.7 (C-2-thienyl); 145.5 (C-6); 159.8 (C-2). IR spectrum (KBr): 3341, 2914, 1633, 1482, 1389, 1121, 1088, 1061 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -34.3$  (*c* 3.21, MeOH). Anal. Calcd for

 $C_{14}H_{15}NO_4S\,\cdot^{1}\!/_{4}H_2O\!\!:$  C, 56.46; H, 5.25; N, 4.70. Found: C, 56.67; H, 5.01; N, 4.68.

 $1\beta$ -[5-(2-Pyridyl)pyridin-2-yl]-1-deoxy-D-ribofuranose (14d). Compound 14d was prepared from 13d (227 mg, 0.360 mmol) according to general procedure (Method A), in 83% yield, as a white solid, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI)  $C_{15}H_{17}N_2O_4$ : [M + H] calculated 289.1183, found 289.1183. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>): 3.55 (ddd, 1H, J<sub>gem</sub> = 11.8 Hz, J<sub>5'a,OH</sub> = 5.8 Hz,  $J_{5'a,4'} = 4.3 \text{ Hz}, \text{H-}5'a$ ; 3.68 (ddd, 1H,  $J_{\text{gem}} = 11.8 \text{ Hz}, J_{5'a,\text{OH}} = 4.9 \text{ Hz}, J_{5'b,4'}$ = 3.5 Hz, H-5'b); 3.89 (ddd,  $J_{4',3'}$  = 5.6 Hz,  $J_{4',5'a}$  = 4.3 Hz,  $J_{4',5'b}$  = 3.5 Hz, H-4'); 3.92 (bq, 1H,  $J_{3',4'} = J_{3',2'} = J_{3',OH} = 4.2$  Hz, H-3'); 4.04 (dd, 1H,  $J_{2'}$ )  $_{OH} = 5.8 \text{ Hz}, J_{2',1'} = J_{2',3'} = 4.8 \text{ Hz}, \text{H-2'}; 4.79 (d, 1H, J_{1',2'} = 4.8 \text{ Hz}, \text{H-1'});$ 4.89 (d, 1H, J<sub>OH,3'</sub> = 5.5 Hz, OH-3'); 4.95 (t, 1H, J<sub>OH,5'a</sub> = J<sub>OH,5'b</sub> = 5.5 Hz, OH-5'); 5.12 (d, 1H,  $J_{OH,2'}$  = 5.8 Hz, OH-2'); 7.41 (ddd, 1H,  $J_{5,4}$  = 7.5 Hz, *J*<sub>5,6</sub> = 4.8 Hz, *J*<sub>5,3</sub> = 1.1 Hz, H-5-py); 7.69 (bd, 1H, *J*<sub>3,4</sub> = 8.2 Hz, H-3); 7.93 (bddd, 1H, *J*<sub>4,3</sub> = 7.8 Hz, *J*<sub>4,5</sub> = 7.6 Hz, *J*<sub>4,6</sub> = 1.8 Hz, H-4-py); 8.05 (dt, 1H,  $J_{3,4} = 8.0 \text{ Hz}, J_{3,5} = J_{3,6} = 1.1 \text{ Hz}, \text{H-3-py}); 8.42 \text{ (dd, 1H, } J_{4,3} = 8.2 \text{ Hz}, J_{4,6} = 1.1 \text{ Hz}, J$ 2.3 Hz, H-4); 8.70 (ddd, 1H, J<sub>6,5</sub> = 4.8 Hz, J<sub>6,4</sub> = 1.9 Hz, J<sub>6,3</sub> = 1.0 Hz, H-6py); 9.19 (dd, 1H,  $J_{6,4} = 2.3$  Hz,  $J_{6,3} = 0.9$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 61.9 (CH<sub>2</sub>-5'); 71.2 (CH-3'); 76.9 (CH-2'); 84.5 (CH-4'); 85.4 (CH-1'); 120.8 (CH-3-py); 121.3 (CH-3); 123.3 (CH-5-py); 133.2 (C-5); 134.7 (CH-4); 137.6 (CH-4-py); 147.1 (C-6); 150.0 (CH-6-py); 153.9 (C-2-py); 161.3 (C-2).  $[\alpha]^{20}_{D} = -35.4$  (c 1.78, MeOH). Anal. Calcd for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub>·<sup>1</sup>/<sub>4</sub>H<sub>2</sub>O: C, 61.53; H, 5.68; N, 9.57. Found: C, 61.28; H, 5.44; N, 9.48.

 $1\beta$ -(5-Aminopyridin-2-yl)-1-deoxy-D-ribofuranose (14e). Compound 14e was prepared from 13e (500 mg, 0.880 mmol) according to general procedure (Method A), in 75% yield, as a yellowish oil, which after lyophilization furnished a yellow hygroscopic solid. HRMS (ESI) C<sub>10</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>: [M + H] calculated 227.1026, found 227.1026. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 3.47 (bdm, 1H,  $J_{gem} =$ 11.7 Hz, H-5'a); 3.59 (dd, 1H,  $J_{gem} = 11.7$  Hz,  $J_{5'b,4'} = 3.7$  Hz, H-5'b); 3.78 (bddd, 1H,  $J_{4',3'}$  = 5.3 Hz,  $J_{4',5'a}$  = 4.2 Hz,  $J_{4',5'b}$  = 3.7 Hz, H-4'); 3.89 (t, 1H,  $J_{3',2'} = J_{3',4'} = 5.2$  Hz H-3'); 3.96 (t, 1H,  $J_{2',1'} = J_{2',3'} = 5.1$  Hz, H-2'); 4.53 (d, 1H,  $J_{1',2'}$  = 5.0 Hz, H-1'); 4.78 - 5.10 (m, 3H, OH-2', 3', 5'); 5.26 (s, 2H, NH<sub>2</sub>-5); 6.88 (dd, 1H,  $J_{4,3}$  = 8.3 Hz,  $J_{4,6}$  = 2.7 Hz, H-4); 7.11 (bd, 1H, *J*<sub>3,4</sub> = 8.4 Hz, H-3); 7.86 (dd, 1H, *J*<sub>6,4</sub> = 2.7 Hz, *J*<sub>6,3</sub> = 0.7 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 62.3 (CH<sub>2</sub>-5'); 71.4 (CH-3'); 76.3 (CH-2'); 84.4 (CH-4'); 85.3 (CH-1'); 120.4 (CH-4); 122.1 (CH-3); 135.3 (CH-6); 144.35 (C-5); 147.3 (C-2). IR spectrum (KBr): 3421, 1630, 1498, 1307, 1114, 1052, 1024 cm<sup>-1</sup>.  $[\alpha]_{D}^{20} = -35.4$ (c 2.85, MeOH).

1*B*-[5-(Dimethylamino)pyridin-2-yl]-1-deoxy-D-ribofuranose (14f). Compound 14f was prepared from 13f (450 mg, 0.754 mmol) according to general procedure (Method A), in 76% yield, as a yellowish solid. Crystallization from EtOAc/MeOH yielded yellowish crystals: mp 158–161 °C. HRMS (ESI) C<sub>12</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub>: [M + H] calculated 255.1339, found 255.1340. <sup>1</sup>H NMR (500 MHz, DMSO $d_6$ ): 2.91 (s, 6H, (CH<sub>3</sub>)<sub>2</sub>N); 3.48 (dd, 1H,  $J_{gem} = 11.7$  Hz,  $J_{5'a,4'} = 4.4$  Hz, H-5'a); 3.61 (dd, 1H,  $J_{\text{gem}} = 11.7$  Hz,  $J_{5'b,4'} = 3.7$  Hz, H-5'b); 3.81 (dt, 1H,  $J_{4',3'} = 5.2$  Hz,  $J_{4',5'a} = J_{4',5'b} = 4.0$  Hz, H-4'); 3.90 (q, 1H,  $J_{3',2'} = J_{3',4'}$  $= J_{3',OH} = 5.2 \text{ Hz H-3'}; 3.99 (q, 1H, J_{2',OH} = J_{2',1'} = J_{2',3'} = 5.2 \text{ Hz}, \text{H-2'});$ 4.61 (d, 1H,  $J_{1',2'}$  = 5.0 Hz, H-1'); 4.78 (d, 1H,  $J_{OH,3'}$  = 5.5 Hz, OH-3'); 4.90 (d, 1H,  $J_{OH,2'}$  = 5.7 Hz, OH-2'); 5.03 (bs, 1H, OH-5'); 7.08 (dd, 1H,  $J_{4,3} = 8.7$  Hz,  $J_{4,6} = 3.1$  Hz, H-4); 7.27 (d, 1H,  $J_{3,4} = 8.6$  Hz, H-3); 8.03 (bd, 1H,  $J_{6,4}$  = 3.0 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 40.0 ((CH<sub>3</sub>)<sub>2</sub>N); 62.3 (CH<sub>2</sub>-5'); 71.4 (CH-3'); 76.4 (CH-2'); 84.4 (CH-4'); 85.1 (CH-1'); 119.3 (CH-4); 121.8 (CH-3); 133.8 (CH-6); 145.7 (C-5); 147.6 (C-2). IR spectrum (KBr): 2812, 1362, 1226, 1170, 1128 cm<sup>-1</sup>.  $[\alpha]_{D}^{20} = -40.0$  (c 3.87, MeOH). Anal. Calcd for C<sub>12</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub> ·<sup>1</sup>/<sub>4</sub>H<sub>2</sub>O: C, 55.69; H, 7.21; N, 10.82. Found: C, 55.72; H, 7.07; N, 10.63.

1β-[5-(Carbamoyl)pyridin-2-yl]-1-deoxy-D-ribofuranose (14g). Compound 14g was prepared from 13g (300 mg, 0.503 mmol)

according to general procedure (Method A), in 75% yield, as a colorless oil, which after lyophilization furnished a white hygroscopic cotton-like solid. HRMS (ESI)  $C_{11}H_{15}N_2O_5$ : [M + H] calculated 255.0976, found 255.0976. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 3.53 (dm, 1H, *J*<sub>gem</sub> = 11.8 Hz, H-5'a); 3.65 (dm, 1H,  $J_{gem}$  = 11.8 Hz, H-5'b); 3.85 - 3.90 (m, 2H, H-3',4'); 3.98 (bq, 1H,  $J_{2',1'} = J_{2',3'} = J_{2',OH} = 4.8$  Hz, H-2'); 4.77 (d, 1H,  $J_{1',2'} = 4.7$  Hz, H-1'); 4.89 (d, 1H,  $J_{OH,3'} = 5.1$  Hz, OH-3'); 4.92 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.5 \text{ Hz}, \text{OH-}5'$ ; 5.13 (d, 1H,  $J_{OH,2'} = 5.7 \text{ Hz}, \text{OH-}2'$ ); 7.56 (bs, 1H, NHa); 7.66 (bd, 1H, J<sub>3,4</sub> = 8.1 Hz, H-3); 8.13 (bs, 1H, NHb); 8.18 (dd, 1H, *J*<sub>4,3</sub> = 8.2 Hz, *J*<sub>4,6</sub> = 2.3 Hz, H-4); 8.96 (dd, 1H, *J*<sub>6,4</sub> = 2.3 Hz,  $J_{6,3} = 0.8$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 61.7 (CH<sub>2</sub>-5'); 71.0 (CH-3'); 76.9 (CH-2'); 84.5 (CH-4'); 85.4 (CH-1'); 120.7 (CH-3); 128.7 (C-5); 135.9 (CH-4); 148.1 (CH-6); 163.6 (C-2); 166.5 (CO). IR spectrum (KBr): 1670, 1615, 1407, 1112, 1051, 860 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -32.2$  (c 2.02, MeOH). Anal. Calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>5</sub>·H<sub>2</sub>O: C, 48.53; H, 5.92; N, 10.29. Found: C, 48.41; H, 5.55; N, 10.00.

1β-[5-(Dimethylcarbamoyl)pyridin-2-yl]-1-deoxy-D-ribofuranose (14h). Compound 14h was prepared from 13h (440 mg, 0.704 mmol) according to general procedure (Method A), in 81% yield, as a colorless oil, which after lyophilization furnished a white hygroscopic powder. Crystallization from EtOAc/MeOH yielded white crystals: mp 142-143 °C. HRMS (ESI) C<sub>13</sub>H<sub>19</sub>N<sub>2</sub>O<sub>5</sub>: [M + H] calculated 283.1289, found 283.1288. <sup>1</sup>H NMR (500 MHz, DMSO $d_6$ ): 2.93 and 3.00 (2 × s, 2 × 3H, (CH<sub>3</sub>)<sub>2</sub>N); 3.53 (ddd, 1H,  $J_{gem}$  = 11.9 Hz,  $J_{5'a,OH} = 6.0$  Hz,  $J_{5'a,4'} = 4.2$  Hz, H-5'a); 3.65 (ddd, 1H,  $J_{gem} = 11.9$ Hz,  $J_{5'b,OH} = 5.2$  Hz,  $J_{5'b,4'} = 3.5$  Hz, H-5'b); 3.87 (m, 1H, H-4'); 3.89 (bq, 1H,  $J_{3',2'} = J_{3',4'} = J_{3',OH} = 5.1$  Hz, H-3'); 4.00 (q, 1H,  $J_{2',1'} = J_{2',3'} = J_{2',3'} = J_{3',2'}$  $J_{2',OH} = 5.0$  Hz, H-2'); 4.74 (d, 1H,  $J_{1',2'} = 4.9$  Hz, H-1'); 4.90 (d, 1H,  $J_{OH,3'} = 5.1 \text{ Hz}, \text{ OH-3'}$ ; 4.91 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.6 \text{ Hz}, \text{ OH-5'}$ ); 5.12 (d, 1H, *J*<sub>OH,2'</sub> = 5.6 Hz, OH-2'); 7.63 (bd, 1H, *J*<sub>3,4</sub> = 8.0 Hz, H-3); 7.83 (dd, 1H,  $J_{4,3}$  = 8.0 Hz,  $J_{4,6}$  = 2.2 Hz, H-4); 8.55 (dd, 1H,  $J_{6,4}$  = 2.2 Hz,  $J_{6,3} = 0.9$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 35.0 ((CH<sub>3</sub>)<sub>2</sub>N); 61.9 (CH<sub>2</sub>-5'); 71.2 (CH-3'); 76.8 (CH-2'); 84.6 (CH-4'); 85.3 (CH-1'); 120.9 (CH-3); 131.3 (C-5); 135.6 (CH-4); 147.1 (CH-6); 161.7 (C-2); 168.1 (CO). IR spectrum (KBr): 3371, 2929, 2971, 1625, 1511, 1481, 1454, 1403, 1267, 1202, 1094, 1052 cm<sup>-1</sup>.  $[\alpha]_{D}^{20} = -37.1$  (c 2.25, MeOH). Anal. Calcd for  $C_{13}H_{18}N_2O_5$ . C, 55.31; H, 6.43; N, 9.92. Found: C, 55.24; H, 6.56; N, 9.90.

1 $\beta$ -[5-Hydroxypyridin-2-yl]-1-deoxy-D-ribofuranose (14i). Compound 14i was prepared from 13i (652 mg, 1.14 mmol) according to general procedure (Method B), in 74% yield, as a colorless oil, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI) C<sub>10</sub>H<sub>14</sub>NO<sub>5</sub>: [M + H] calculated 228.0867, found 228.0866. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 3.48 (bd, 1H, *J*<sub>gem</sub> = 11.9 Hz, H-5'a); 3.60 (bd, 1H,  $J_{gem} = 11.9$  Hz, H-5'b); 3.80 (bddd, 1H,  $J_{4',3'} = 5.3$  Hz,  $J_{4',5'a} = 4.5$ Hz,  $J_{4',5'b} = 3.8$  Hz, H-4'); 3.88 (q, 1H,  $J_{3',2'} = J_{3',4'} = J_{3',OH} = 5.3$  Hz H-3'); 3.96 (bdt, 1H,  $J_{2',OH} = 5.7$  Hz,  $J_{2',1'} = J_{2',3'} = 5.2$  Hz, H-2'); 4.61 (d, 1H,  $J_{1',2'} = 5.1$  Hz, H-1'); 4.80 (d, 1H,  $J_{OH,3'} = 5.6$  Hz, OH-3'); 4.93 (bs, 1H, OH-5'); 4.93 (d, 1H,  $J_{OH,2'}$  = 5.8 Hz, OH-2'); 7.13 (dd, 1H,  $J_{4,3}$  = 8.4 Hz, *J*<sub>4,6</sub> = 2.9 Hz, H-4); 7.32 (bd, 1H, *J*<sub>3,4</sub> = 8.4 Hz, H-3); 8.05 (dd, 1H,  $J_{6,4}$  = 2.8 Hz,  $J_{6,3}$  = 0.7 Hz, H-6); 9.84 (s, 1H, OH-5). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 62.1 (CH<sub>2</sub>-5'); 71.3 (CH-3'); 76.4 (CH-2'); 84.5 (CH-4'); 85.0 (CH-1'); 122.4 (CH-3); 122.7 (CH-4); 136.9 (CH-6); 150.9 (C-2); 153.1 (C-5). IR spectrum (KBr): 3430, 1583, 1495, 1275, 1249, 1106, 1051 cm<sup>-1</sup>.  $[\alpha]_{D}^{20} = -30.4$  (*c* 2.04, MeOH). Anal. Calcd for C<sub>10</sub>H<sub>13</sub>NO<sub>5</sub>·<sup>3</sup>/<sub>2</sub>H<sub>2</sub>O: C 47.24; H, 6.34; N, 5.51., Found: C 47.34; H, 6.19; N, 5.48.

β-(6-Methylpyridin-3-yl)-1-deoxy-D-ribofuranose (16a). Compound 16a was prepared from 15a (374 mg, 0.658 mmol) according to general procedure (Method A), in 90% yield as a white solid, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI) C<sub>11</sub>H<sub>16</sub>NO<sub>4</sub>: [M + H] calculated 226.1074, found 226.1074. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 2.44 (s, 3H, CH<sub>3</sub>); 3.49 – 3.59 (m, 2H, H-5'); 3.70 (m, 1H, H-2'); 3.82 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.4$  Hz,  $J_{4',3'} = 3.2$  Hz, H-4'); 3.91 (m, 1H, H-3'); 4.56 (d, 1H,  $J_{1',2'} = 7.4$  Hz, H-1'); 4.83 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.6$  Hz, OH-5'); 4.94 (d, 1H,  $J_{OH,3'} = 4.6$  Hz, OH-3'); 5.01 (d, 1H,  $J_{OH,2'} = 7.0$  Hz, OH-2'); 7.21 (bd, 1H,  $J_{3,4} = 8.0$  Hz, H-3); 7.67 (bdd, 1H,  $J_{4,3} = 8.1$  Hz,  $J_{4,6} = 2.3$  Hz, H-4); 8.42 (bd, 1H,  $J_{6,4} = 2.2$  Hz, H-6).<sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 23.9 (CH<sub>3</sub>); 62.2 (CH<sub>2</sub>-5'); 71.7 (CH-3'); 77.8 (CH-2'); 80.9 (CH-1'); 85.6 (CH-4'); 122.8 (CH-3); 133.8 (C-5); 134.4 (CH-4); 147.3 (CH-6); 157.1 (C-2). IR spectrum (KBr): 3421, 2922, 1610, 1497, 1118, 1032 cm<sup>-1</sup>. [ $\alpha$ ]<sup>20</sup><sub>D</sub> = -26.4 (c 1.94, MeOH). Anal. Calcd for C<sub>11</sub>H<sub>15</sub>NO<sub>4</sub> · 0.6 H<sub>2</sub>O: C, 55.97; H, 6.92; N, 5.93. Found: C, 56.28; H, 6.67; N, 5.52.

 $1\beta$ -(6-Phenylpyridin-3-yl)-1-deoxy-D-ribofuranose (16b). Compound 16b was prepared from 15b (395 mg, 0.627 mmol) according to general procedure (Method A), in 91% yield as a white solid, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI) C<sub>16</sub>H<sub>18</sub>NO<sub>4</sub>: [M + H] calculated 288.1230, found 288.1230. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 3.57 (ddd, 1H,  $J_{gem} =$ 11.7 Hz,  $J_{5'a,OH} = 5.4$  Hz,  $J_{5'a,4'} = 4.4$  Hz, H-5'a); 3.60 (ddd, 1H,  $J_{gem} =$ 11.7 Hz,  $J_{5'b,OH} = 5.5$  Hz,  $J_{5'b,4'} = 4.4$  Hz, H-5'b); 3.78 (td, 1H,  $J_{2',1'} = J_{2',1}$ <sub>OH</sub> = 7.2 Hz,  $J_{2',3'}$  = 5.2 Hz, H-2'); 3.87 (td, 1H,  $J_{4',5'a}$  =  $J_{4',5'b}$  = 4.4 Hz,  $J_{4',3'} = 3.1 \text{ Hz}, \text{H-4'}$ ; 3.96 (btd, 1H,  $J_{3',2'} = J_{3',\text{OH}} = 4.7 \text{ Hz}, J_{3',4'} = 3.2 \text{ Hz}$ , H-3'); 4.67 (d, 1H,  $J_{1',2'}$  = 7.5 Hz, H-1'); 4.88 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b}$  = 5.5 Hz, OH-5'); 4.99 (d, 1H,  $J_{OH,3'}$  = 4.6 Hz, OH-3'); 5.10 (d, 1H,  $J_{OH,2'}$ = 7.1 Hz, OH-2'); 7.43 (m, 1H, H-p-Ph); 7.49 (m, 2H, H-m-Ph); 7.89 (ddd, 1H, *J*<sub>4,3</sub> = 8.2 Hz, *J*<sub>4,6</sub> = 2.2 Hz, *J*<sub>4,1'</sub> = 0.6 Hz, H-4); 7.94 (dd, 1H, *J*<sub>3,4</sub> = 8.2 Hz, *J*<sub>3,6</sub> = 0.9 Hz, H-3); 8.08 (m, 2H, H-o-Ph); 8.67 (dt, 1H, *J*<sub>6,4</sub> = 2.2 Hz,  $J_{6,3} = J_{6,1'} = 0.7$  Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 62.2 (CH<sub>2</sub>-5'); 71.8 (CH-3'); 77.9 (CH-2'); 80.8 (CH-1'); 85.8 (CH-4'); 119.9 (CH-3); 126.6 (CH-o-Ph); 128.9 (CH-m-Ph); 129.1 (CH-p-Ph); 135.2 (CH-4); 135.7 (C-5); 138.8 (C-*i*-Ph); 148.0 (CH-6); 155.5 (C-2). IR spectrum (KBr): 3410, 2925, 1601, 1565, 1479, 1120 cm<sup>-1</sup>.  $[\alpha]_{D}^{20} = -37.3 \ (c \ 2.2, MeOH).$  Anal. Calcd for  $C_{16}H_{17}NO_4 \cdot H_2O: C$ , 64.65; H, 6.12; N, 4.73. Found: C, 64.81; H, 6.13; N, 4.65.

 $1\beta$ -[6-(2-Thienyl)pyridin-3-yl]-1-deoxy-D-ribofuranose (16c). Compound 16c was prepared from 15c (348 mg, 0.547 mmol) according to general procedure (Method A), in 89% yield, as a white solid, which after lyophilization furnished white hygroscopic powder. HRMS (ESI) C<sub>14</sub>H<sub>16</sub>NO<sub>4</sub>S: [M + H] calculated 294.0795, found 294.0795. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 3.54 (ddd, 1H,  $J_{gem} = 11.7$  Hz,  $J_{5'a,OH} = 5.4$  Hz,  $J_{5'a,4'} = 4.4$  Hz, H-5'a); 3.58 (ddd, 1H,  $J_{gem} = 11.8$  Hz,  $J_{5'b,OH} = 5.5$  Hz,  $J_{5'b,4'} = 4.3$  Hz, H-5'b); 3.76 (m, 1H, H-2'); 3.85 (td, 1H,  $J_{4',5'a} = J_{4',5'b} =$ 4.3 Hz,  $J_{4',3'} = 3.1$  Hz, H-4'); 3.94 (m, 1H, H-3'); 4.63 (d, 1H,  $J_{1',2'} = 7.4$  Hz, 4.0 Hz, OH-3'); 5.10 (d, 1H,  $J_{OH,2'}$  = 5.8 Hz, OH-2'); 7.16 (dd,1H,  $J_{4,5}$  = 5.0 Hz,  $J_{4,3} = 3.7$  Hz, H-4-thienyl); 7.61 (dd, 1H,  $J_{5,4} = 5.0$  Hz,  $J_{5,3} = 1.2$  Hz, H-5-thienyl); 7.78 (dd, 1H, J<sub>3,4</sub> = 3.7 Hz, J<sub>3,5</sub> = 1.2 Hz, H-3-thienyl); 7.83  $(bdd, 1H, J_{4,3} = 8.3 Hz, J_{4,6} = 2.2 Hz, H-4); 7.88 (dd, 1H, J_{3,4} = 8.2 Hz, J_{3,6} =$ 0.9 Hz, H-3); 8.52 (bd, 1H,  $J_{6,4}$  = 2.2 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-d<sub>6</sub>): 62.1 (CH<sub>2</sub>-5'); 71.7 (CH-3'); 77.8 (CH-2'); 80.8 (CH-1'); 85.7 (CH-4'); 118.3 (CH-3); 125.2 (CH-3-thienyl); 128.3 (CH-5-thienyl); 128.6 (CH-4-thienyl); 135.1 (CH-4); 135.5 (C-5); 144.7 (C-2-thienyl); 147.7 (CH-6); 151.3 (C-2). IR spectrum (KBr): 3420, 2914, 1600, 1480, 1396, 1313, 1122, 2055, 1027, 818 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -50.6$  (*c* 1.9, DMSO). Anal. Calcd for C<sub>14</sub>H<sub>15</sub>NO<sub>4</sub>S: C, 57.32; H, 5.17; N, 4.78. Found: C, 57.08; H, 5.00; N, 4.66.

**1β**-[6-(2-Pyridyl)pyridin-3-yl]-1-deoxy-D-ribofuranose (16d). Compound 16d was prepared from 15d (148 mg, 0.234 mmol) according to general procedure (Method A), in 52% yield, as a white solid, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI)  $C_{15}H_{17}N_2O_4$ : [M + H] calculated 289.1183, found 289.1183. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 3.56 (bdt, 1H, *J*<sub>gem</sub> = 11.7 Hz, *J*<sub>5'a,OH</sub> = *J*<sub>5'a,4'</sub> = 4.8 Hz, H-5'a); 3.60 (bddd, 1H, *J*<sub>gem</sub> = 11.7 Hz, *J*<sub>5'a,OH</sub> = 5.2 Hz, *J*<sub>5'b,4'</sub> = 4.5 Hz, H-5'b); 3.78 (m, 1H, H-2'); 3.88 (td, 1H, *J*<sub>4',5'a</sub> = *J*<sub>4',5'b</sub> = 4.4 Hz,  $\begin{array}{l} J_{4',3'} = 3.1 \; \text{Hz}, \text{H-4'} \; ); \; 3.96 \; (\text{m}, 1\text{H}, \text{H-3'}); \; 4.69 \; (\text{d}, 1\text{H}, J_{1',2'} = 7.5 \; \text{Hz}, \text{H-1'}); \\ 4.88 \; (\text{t}, 1\text{H}, J_{\text{OH},5'a} = J_{\text{OH},5'b} = 5.6 \; \text{Hz}, \text{OH-5'}); \; 5.01 \; (\text{bm}, 1\text{H}, \text{OH-3'}); \; 5.12 \\ (\text{bm}, 1\text{H}, \text{OH-2'}); \; 7.44 \; (\text{ddd}, 1\text{H}, J_{5,4} = 7.5 \; \text{Hz}, J_{5,6} = 4.8 \; \text{Hz}, J_{5,3} = 1.2 \; \text{Hz}, \\ \text{H-5-py}); \; 7.94 \; (\text{btd}, 1\text{H}, J_{4,3} = J_{4,5} = 7.7 \; \text{Hz}, J_{4,6} = 1.8 \; \text{Hz}, \text{H-4-py}); \; 7.95 \; (\text{bdd}, \\ 1\text{H}, J_{4,3} = 8.2 \; \text{Hz}, J_{4,6} = 2.1 \; \text{Hz}, \text{H-4}); \; 8.36 \; (\text{dd}, 1\text{H}, J_{3,4} = 8.1 \; \text{Hz}, J_{3,6} = 0.9 \; \text{Hz}, \\ \text{H-3}); \; 8.38 \; (\text{dt}, 1\text{H}, J_{3,4} = 7.9 \; \text{Hz}, J_{3,5} = J_{3,6} = 1.1 \; \text{Hz}, \text{H-3-py}); \; 8.68 \; (\text{ddd}, 1\text{H}, J_{6,5} = 4.8 \; \text{Hz}, J_{6,4} = 1.9 \; \text{Hz}, J_{6,3} = 1.0 \; \text{Hz}, \text{H-6-py}); \; 8.69 \; (\text{dm}, 1\text{H}, J_{6,4} = 2.1 \\ \text{Hz}, \text{H-6}).^{13}\text{C} \; \text{NMR} \; (125.7 \; \text{MHz}, \; \text{DMSO-} d_6): \; 62.2 \; (\text{CH}_2\text{-5'}); \; 71.8 \; (\text{CH-3'}); \; 120.6 \; (\text{CH-3-py}); \; 124.3 \; (\text{CH-5-py}); \; 135.1 \; (\text{CH-4}); \; 137.5 \; (\text{C-5}); \; 137.5 \; (\text{CH-4}); \\ \text{py}); \; 147.7 \; (\text{CH-6}); \; 149.5 \; (\text{CH-6-py}); \; 154.7 \; (\text{C-2}); \; 155.4 \; (\text{C-2-py}). \\ \text{IR spectrum} \; (\text{KBr}): \; 3458, \; 3429, \; 3306, \; 1462, \; 1124, \; 1056, \; 1026 \; \text{cm}^{-1}. \\ [\alpha]^{20}{}_{D} = -60.0 \; (c \; 1.85, \; \text{DMSO}). \; \text{Anal. Calcd for } C_{15}\text{H}_{16}\text{N}_2\text{O}_4 \; \cdot^1/_4\text{H}_2\text{O}: \\ \text{C}, \; 61.53; \; \text{H}, \; 5.68; \; \text{N}, 9.57. \; \text{Found:} \; \text{C}, \; 61.83; \; \text{H}, 5.70; \; \text{N}, 9.20. \\ \end{array}$ 

 $1\beta$ -(6-Aminopyridin-3-yl)-1-deoxy-D-ribofuranose (16e). TBAF  $\cdot$  3H<sub>2</sub>O (886 mg, 2.81 mmol, 4 equiv) was added to a solution of 16e (400 mg, 0.702 mmol) in THF (7 mL), and the resulting mixture was stirred for 3 h at room temperature. After evaporation of the solvent under reduced pressure, the resulting yellow oil was dissolved in water (30 mL) and filtered off. The filtrate was passed through column packed with Dowex 50 in H<sup>+</sup> cycle, and the column was washed with water (500 mL) and then eluted with 75 mL of 10% aqueous ammonia. The ammonia fraction was concentrated under reduced pressure and purified by reversed-phase chromatography (H<sub>2</sub>O/MeOH as an eluent). Subsequent lyophilization furnished compound 16e (103 mg, 65%) as a white hygroscopic powder. HRMS (ESI) C<sub>10</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>: [M + H] calculated 227.1026, found 227.1026. <sup>1</sup>H NMR (500 MHz, DMSO $d_6$ ): 3.47 (dd, 1H,  $J_{gem} = 11.6$  Hz,  $J_{5'a,4'} = 4.8$  Hz, H-5'a); 3.51 (dd, 1H,  $J_{\text{gem}} = 11.6 \text{ Hz}, J_{5'b,4'} = 4.4 \text{ Hz}, \text{H-5'b}$ ; 3.68 (bdd, 1H,  $J_{2',1'} = 7.4 \text{ Hz}$ ,  $J_{2',3'} = 5.5 \text{ Hz}, \text{H-2'}$ ; 3.73 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.6 \text{ Hz}, J_{4',3'} = 3.4 \text{ Hz}$ , H-4'); 3.87 (dd, 1H,  $J_{3',2'}$  = 5.2 Hz,  $J_{3',4'}$  = 3.4 Hz, H-3'); 4.37 (d, 1H,  $J_{1',2'}$  = 7.4 Hz, H-1'); 4.62 - 5.02 (m, 3H, OH-2', 3', 5'); 5.86 (s, 2H, NH<sub>2</sub>); 6.42 (d, 1H, J<sub>3,4</sub> = 8.5 Hz, H-3); 7.38 (dd, 1H, J<sub>4,3</sub> = 8.5 Hz, J<sub>4,6</sub> = 2.3 Hz, H-4); 7.85 (d, 1H,  $J_{6,4}$  = 2.3 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 62.3 (CH<sub>2</sub>-5'); 71.64 (CH-3'); 77.0 (CH-2'); 81.4 (CH-1'); 85.2 (CH-4'); 107.8 (CH-3); 124.0 (C-5); 135.9 (CH-4); 146.5 (CH-6); 159.6 (C-2). IR spectrum (KBr): 3480, 3379, 1636, 1569, 1511, 1130, 1018 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -37.0$  (*c* 1.6, MeOH).

 $1\beta$ -[6-(Dimethylamino)pyridin-3-yl]-1-deoxy-D-ribofuranose (16f). Compound 16f was prepared from 15f (434 mg, 0.727 mmol) according to general procedure (Method A), in 88% yield, as a yellowish solid. HRMS (ESI) C12H19N2O4: [M + H] calculated 255.1339, found 255.1339. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>): 3.00 (s, 6H, (CH<sub>3</sub>)<sub>2</sub>N); 3.46 – 3.56 (m, 2H, H-5'); 3.70 (td, 1H,  $J_{2',OH} = J_{2',1'} =$ 7.0 Hz,  $J_{2',3'} = 5.5$  Hz, H-2'); 3.76 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.5$  Hz,  $J_{4',3'} =$ 3.4 Hz, H-4'); 3.89 (m, 1H, H-3'); 4.43 (d, 1H,  $J_{1',2'} = 7.4$  Hz, H-1'); 4.77 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.5$  Hz, OH-5'); 4.84 (d, 1H,  $J_{OH,3'} = 4.7$  Hz, OH-3'); 4.86 (d, 1H, *J*<sub>OH,2'</sub> = 6.9 Hz, OH-2'); 6.61 (dd, 1H, *J*<sub>3,4</sub> = 8.8 Hz, *J*<sub>3,6</sub> = 0.6 Hz, H-3); 7.50 (bdd, 1H, *J*<sub>4,3</sub> = 8.8 Hz, *J*<sub>4,6</sub> = 2.4 Hz, H-4); 8.04 (dm, 1H,  $J_{6,4}$  = 2.4 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 38.0 ((CH<sub>3</sub>)<sub>2</sub>N); 62.3 (CH<sub>2</sub>-5'); 71.7 (CH-3'); 77.1 (CH-2'); 81.3 (CH-1'); 85.2 (CH-4'); 105.6 (CH-3); 123.7 (C-5); 135.9 (CH-4); 146.4 (CH-6); 159.1 (C-2). IR spectrum (KBr): 3410, 2918, 1617, 1524, 1404, 1115, 1054 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -40.8$  (c 2.0, MeOH). Anal. Calcd for C<sub>12</sub>H<sub>18</sub>N<sub>2</sub>O<sub>4</sub> · 2/3 H<sub>2</sub>O: C, 54.13; H, 7.32; N, 10.52. Found: C, 54.22; H, 7.16; N, 10.14.

**1β-[6-(Carbamoyl)pyridin-3-yl]-1-deoxy-D-ribofuranose** (**16g**). Compound **16g** was prepared from **15g** (216 mg, 0.361 mmol) according to general procedure (Method B), in 85% yield, as a colorless oil, which after lyophilization furnished a white hygroscopic solid. HRMS (ESI) C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>5</sub>Na: [M + Na] calculated 277.0795, found 277.0795. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>): 3.51 – 3.62 (m, 2H, H-5'); 3.74 (btd, 1H,  $J_{2',OH} = J_{2',1'} = 7.2$  Hz,  $J_{2',3'} = 5.3$  Hz, H-2'); 3.88 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.3$  Hz,  $J_{4',3'} = 3.0$  Hz, H-4'); 3.94 (m, 1H, H-3'); 4.71 (d, 1H,  $J_{1',2'}$  = 7.5 Hz, H-1'); 4.87 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.5$  Hz, OH-5'); 5.01 (d, 1H,  $J_{OH,3'}$  = 4.5 Hz, OH-3'); 5.14 (d, 1H,  $J_{OH,2'}$  = 7.1 Hz, OH-2'); 7.61 (m, 1H, NH<sub>2</sub>-a); 7.97 (ddd, 1H,  $J_{4,3}$  = 8.0 Hz,  $J_{4,6}$  = 2.1 Hz,  $J_{4,1'}$  = 0.6 Hz, H-4); 8.01 (dd, 1H,  $J_{3,4}$  = 8.0 Hz,  $J_{3,6}$  = 0.9 Hz, H-3); 8.08 (m, 1H, NH<sub>2</sub>-b); 8.63 (bdt, 1H,  $J_{6,4}$  = 2.0 Hz,  $J_{6,3}$  =  $J_{6,1'}$  = 0.7 Hz, H-6). <sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 62.1 (CH<sub>2</sub>-5'); 71.7 (CH-3'); 78.0 (CH-2'); 80.6 (CH-1'); 85.9 (CH-4'); 121.7 (CH-3); 135.1 (CH-4); 140.0 (C-5); 146.7 (CH-6); 149.8 (C-2); 166.2 (CO). IR spectrum (KBr): 3411, 1683, 1574, 1418, 1059 cm<sup>-1</sup>. [α]<sup>20</sup><sub>D</sub> = -30.9 (*c* 2.08, MeOH).

 $1\beta$ -[6-(Dimethylcarbamoyl)pyridin-3-yl]-1-deoxy-D-ribofuranose (16h). Compound 16h was prepared from 15h (250 mg, 0.4 mmol) according to general procedure (Method A), in 88% yield, as a colorless oil, which after lyophilization furnished a white hygroscopic powder. HRMS (ESI)  $C_{13}H_{18}N_2O_5Na$ : [M + Na] calculated 305.1108, found 305.1107. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 2.94 and 3.00 (2 × s,  $2 \times 3$ H, (CH<sub>3</sub>)<sub>2</sub>N); 3.54 (ddd, 1H,  $J_{gem} = 11.7$  Hz,  $J_{5'a,OH} = 5.4$  Hz,  $J_{5'a,4'} = 4.4 \text{ Hz}, \text{H-}5'a$ ; 3.58 (ddd, 1H,  $J_{\text{gem}} = 11.8 \text{ Hz}, J_{5'b,\text{OH}} = 5.5 \text{ Hz},$  $J_{5'b,4'} = 4.3$  Hz, H-5'b); 3.75 (td, 1H,  $J_{2',1'} = J_{2',OH} = 7.3$  Hz,  $J_{2',3'} =$ 5.2 Hz, H-2'); 3.87 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.3$  Hz,  $J_{4',3'} = 3.0$  Hz, H-4'); 3.94 (m, 1H, H-3'); 4.66 (d, 1H,  $J_{1',2'}$  = 7.6 Hz, H-1'); 4.86 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} = 5.5 \text{ Hz}, \text{ OH-5'}$ ; 5.01 (d, 1H,  $J_{OH,3'} = 4.5 \text{ Hz}, \text{ OH-3'}$ ); 5.11 (d, 1H,  $J_{OH,2'}$  = 7.1 Hz, OH-2'); 7.53 (dd, 1H,  $J_{3,4}$  = 8.0 Hz,  $J_{3,6}$  = 0.9 Hz, H-3); 7.91 (ddd, 1H,  $J_{4,3}$  = 8.0 Hz,  $J_{4,6}$  = 2.1 Hz,  $J_{4,1'}$  = 0.5 Hz, H-4); 8.58 (dm, 1H,  $J_{6,4}$  = 2.1 Hz, H-6).<sup>13</sup>C NMR (125.7 MHz, DMSO- $d_6$ ): 35.0 and 38.5 ((CH<sub>3</sub>)<sub>2</sub>N); 62.1 (CH<sub>2</sub>-5'); 71.7 (CH-3'); 77.9 (CH-2'); 80.6 (CH-1'); 85.9 (CH-4'); 122.7 (CH-3); 135.0 (CH-4); 137.7 (C-5); 146.5 (CH-6); 153.8 (C-2); 168.2 (CO). IR spectrum (KBr): 3426, 2930, 1627, 1407, 1099 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} = -34.0$  (*c* 2.04, MeOH). Anal. Calcd for C13H18N2O5 · H2O: C, 51.99; H, 6.71; N, 9.33. Found: C, 52.22; H, 6.48; N, 8.97.

 $1\beta$ -(6-Oxo-1*H*-pyridin-3-yl)-1-deoxy-D-ribofuranose (16i). 15i (207 mg, 0.363 mmol) was dissolved in TFA/H<sub>2</sub>O (9:1, 1.1 mL) and stirred at room temperature for 2 h. The reaction mixture was then coevaporated with MeOH  $(3 \times 100 \text{ mL})$ , dissolved in water, and filtered off, and the filtrate was passed through column packed with DOWEX 50 in H<sup>+</sup> cycle. The column was washed with 250 mL of water followed by 75 mL of 25% NH<sub>4</sub>OH. Ammonia solutions were concentrated under reduced pressure and purified by reversed-phase chromatography (H<sub>2</sub>O/MeOH as an eluent). Subsequent lyophilization furnished compound 16i (34 mg mg, 41%) as a white hygroscopic powder. HRMS (ESI) C<sub>10</sub>H<sub>12</sub>NO<sub>5</sub>: [M – H] calculated 226.0721, found 226.0721. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): 3.46 (ddd, 1H,  $J_{gem} = 11.7$  Hz,  $J_{5'a,OH} =$ 5.5 Hz,  $J_{5'a,4'}$  = 4.4 Hz, H-5'a); 3.51 (ddd, 1H,  $J_{gem}$  = 11.7 Hz,  $J_{5'b,OH}$  = 5.6 Hz,  $J_{5'b,4'} = 4.3$  Hz, H-5'b); 3.68 (btd, 1H,  $J_{2',1'} = J_{2',OH} = 7.2$  Hz,  $J_{2',3'}$ = 5.3 Hz, H-2'); 3.74 (td, 1H,  $J_{4',5'a} = J_{4',5'b} = 4.3$  Hz,  $J_{4',3'} = 3.1$  Hz, H-4'); 3.87 (bddd, 1H,  $J_{3',2'}$  = 5.2 Hz,  $J_{3',OH}$  = 4.5 Hz,  $J_{3',4'}$  = 3.1 Hz, H-3'); 4.31 (d, 1H,  $J_{1',2'}$  = 7.5 Hz, H-1'); 4.80 (t, 1H,  $J_{OH,5'a} = J_{OH,5'b} =$ 5.6 Hz, OH-5'); 4.86 (d, 1H,  $J_{OH,3'}$  = 4.5 Hz, OH-3'); 4.90 (d, 1H,  $J_{OH,2'} = 6.9$  Hz, OH-2'); 6.32 (d, 1H,  $J_{3,4} = 9.5$  Hz, H-3); 7.29 (bd, 1H,  $J_{6,4} = 2.6$  Hz, H-6); 7.47 (dd, 1H,  $J_{4,3} = 8.5$  Hz,  $J_{4,6} = 2.6$  Hz, H-4); 11.47 (bs, 1H, NH).<sup>13</sup>C NMR (125.7 MHz, DMSO-*d*<sub>6</sub>): 62.1 (CH<sub>2</sub>-5'); 71.6 (CH-3'); 76.3 (CH-2'); 80.2 (CH-1'); 85.3 (CH-4'); 117.6 (C-5); 120.0 (CH-3); 133.2 (CH-6); 140.1 (CH-4); 162.5 (C-2). IR spectrum (KBr): 3404, 3354, 1660, 1662, 1549, 1466, 1427, 1116, 1059, 1014 cm<sup>-1</sup>.  $[\alpha]^{20}_{D} =$ -45.2 (c 1.91, MeOH). Anal. Calcd for C<sub>10</sub>H<sub>13</sub>NO<sub>5</sub> · 1/3 H<sub>2</sub>O C, 51.50; H, 5.91; N, 6.01. Found: C, 51.66; H, 5.91; N, 6.02.

**Conformational Analysis.** A conformational analysis of the ribose ring was performed using program PSEUROT 6.3<sup>28</sup> used for description of five-membered ring conformation. Known parametrization for ribose, directly extracted vicinal proton—proton coupling constants, and procedure MANY were used as an input for nonlinear Newton—Raphson minimization implemented in PSEUROT. The results were postprocessed using program MULDER,<sup>29</sup> gaining values

for north and south conformers (phase angle *P*, puckering amplitude  $\Phi$ , equilibrium ratio X).

Single Crystal X-ray Structure Analysis. The diffraction data of single crystals were collected on an X-ray diffractometer with  $Cu_{K\alpha}$  $(\lambda = 1.54180 \text{ Å})$  at 150 K (12, 14a, 14f, 14h) or at 170 K (16c). Both structures were solved by direct methods with SIR92<sup>30</sup> and refined by full-matrix least-squares on F with CRYSTALS.<sup>31</sup> All hydrogen atoms were located in a difference map, but those attached to carbon atoms were repositioned geometrically and then refined with riding constraints, while all other atoms were refined anisotropically in both cases.

Crystal data for **12** (colorless, 0.08  $\times$  0.32  $\times$  0.75 mm). C<sub>28</sub>H<sub>54</sub>-Br<sub>1</sub>N<sub>1</sub>O<sub>5</sub>Si<sub>3</sub>, orthorhombic, space group  $P2_12_12_1$ , a = 8.32986(10) Å, b =11.95103(15) Å, c = 35.3621(5) Å, V = 3520.31(8) Å<sup>3</sup>, Z = 4, M = 648.90, 17910 reflections measured, 7383 independent reflections. Final R = 0.038, wR = 0.046, GoF = 0.928 for 6927 reflections with  $I > 2\sigma(I)$  and 344 parameters. Flack parameter x = 0.048(14). CCDC 821676.

Crystal data for **14a** (colorless, 0.04  $\times$  0.44  $\times$  0.69 mm). C<sub>11</sub>H<sub>15</sub>- $N_1O_4$ , monoclinic, space group  $P2_1$ , a = 5.03627(13) Å, b = 10.7538(3) Å, c = 10.1690(3) Å,  $\beta = 97.824(2)^\circ, V = 545.62(2)$  Å<sup>3</sup>, Z = 2, M = 225.24,4227 reflections measured, 2208 independent reflections. Final R = 0.040, wR = 0.047, GoF = 1.025 for 2110 reflections with  $I > 2\sigma(I)$  and 146 parameters, Flack parameter x = 0.07(18). CCDC 821675.

Crystal data for **14f** (colorless, 0.16  $\times$  0.60  $\times$  0.68 mm). C<sub>12</sub>H<sub>18</sub>- $N_2O_4$ , monoclinic, space group  $P2_1$ , a = 4.99794(7) Å, b = 10.75451(16)Å, c = 11.36720(17) Å,  $\beta = 91.1917(13)^{\circ}$ , V = 610.859(15) Å<sup>3</sup>, Z = 2, M= 254.29, 4271 reflections measured, 2438 independent reflections. Final R = 0.030, wR = 0.033, GoF = 1.058 for 2421 reflections with  $I > 2\sigma(I)$  and 165 parameters. Flack parameter x = 0.29(13). CCDC 821677.

Crystal data for **14h** (colorless, 0.26  $\times$  0.65  $\times$  0.69 mm). C<sub>13</sub>H<sub>18</sub>- $N_2O_5$ , monoclinic, space group  $P2_1$ , a = 6.8778(3) Å, b = 10.4003(5) Å, c = 9.7635(4) Å,  $\beta = 105.007(5)^{\circ}$ , V = 674.58(5) Å<sup>3</sup>, Z = 2, M = 282.30, 6885 reflections measured, 2616 independent reflections. Final R = 0.029, wR = 0.037, GoF = 0.933 for 2604 reflections with  $I > 2\sigma(I)$  and 183 parameters. Flack parameter x = 0.09(11). CCDC 821678.

Crystal data for **16c** (colorless, 0.07  $\times$  0.17  $\times$  0.51 mm).  $C_{14}H_{15}N_1O_4S_1$ , monoclinic, space group  $P2_1$ , a = 4.9831(3) Å, b =11.6287(8) Å, c = 11.8750(8) Å,  $\beta = 100.351(7)^{\circ}$ , V = 676.92(8) Å<sup>3</sup>, Z =2, M = 293.34, 5444 reflections measured, 2758 independent reflections. Final *R* = 0.055, *wR* = 0.068, GoF = 1.071 for 2417 reflections with *I* >  $2\sigma(I)$  and 218 parameters. Flack parameter x = 0.05(4). The thienyl ring has been found to be disordered over two sites (57: 43). The disordered non-hydrogen atoms were refined anisotropically, but several restraints were used to regularize the geometry of the thienyl ring. CCDC 822843.

## ASSOCIATED CONTENT

Supporting Information. CIF files for crystal structures and copies of the <sup>1</sup>H and <sup>13</sup>C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*Phone: +420 220183324. Fax: +420 220183559. E-mail: hocek@ uochb.cas.cz

#### ACKNOWLEDGMENT

This work was supported by the Academy of Sciences of the Czech Republic (Z4 055 905), by the Ministry of Education (LC 512), by the Grant Agency of the ASCR (IAA400550902), and by Gilead Sciences, Inc.

#### REFERENCES

(1) (a) Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009,

109, 6729-6764. (b) Adamo, M. F. A.; Pergoli, R. Curr. Org. Chem. 2008,

12, 1544-1569. (c) Wu, Q. P.; Simons, C. Synthesis 2004, 1533-1553. (2) Štefko, M.; Pohl, R.; Hocek, M. Tetrahedron 2009, 65, 4471-4483. (3) Štefko, M.; Hocek, M. Synthesis 2010, 4199-4206.

(4) (a) Hocek, M.; Pohl, R.; Klepetářová, B. Eur. J. Org. Chem. 2005, 4525-4528. (b) Joubert, N.; Urban, M.; Pohl, R.; Hocek, M. Synthesis 2008, 1918-1932.

(5) Urban, M.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2006, 71, 7322-7328.

(6) Joubert, N.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2007, 72, 6797-6805.

(7) Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N. P.; Hocek, M. J. Org. Chem. 2008, 73, 3798-3806.

(8) Bárta, J.; Slavětínská, L.; Klepetářová, B.; Hocek, M. Eur. J. Org. Chem. 2010, 5432-5443.

(9) Kubelka, T.; Slavětínská, L.; Klepetářová, B.; Hocek, M. Eur. J. Org. Chem. 2010, 2666–2669.

(10) (a) Hari, Y.; Hwang, G. T.; Leconte, A. M.; Joubert, N.; Hocek, M.; Romesberg, F. E. ChemBioChem 2008, 9, 2796-2799. (b) Urban, M.; Joubert, N.; Hocek, M.; Alexander, R. E.; Kuchta, R. D. Biochemistry 2009, 48, 10866-10881. (c) Urban, M.; Joubert, N.; Purse, B. W.; Hocek, M.; Kuchta, R. D. Biochemistry 2010, 49, 727-735.

(11) Štefko, M.; Pohl, R.; Klepetářová, B.; Hocek, M. Eur. J. Org. Chem. 2008, 1689-1704.

(12) Štefko, M.; Slavětínská, L.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2010, 75, 442-449.

(13) (a) Lu, J.; Li, N.-S.; Koo, S. C.; Piccirilli, J. A. J. Org. Chem. 2009, 74, 8021–8030. (b) Sollogoub, M.; Fox, K. R.; Powers, V. E. C.; Brown, T. Tetrahedron Lett. 2002, 43, 3121-3123.

(14) (a) Hildbrand, S.; Blaser, A.; Parel, S.; Leumann, C. J. Am. Chem. Soc. 1997, 119, 5499-5511. (b) Reese, C. B.; Wu, Q. Org. Biomol. Chem. 2003, 1, 3160-3172.

(15) Matulic-Adamic, J.; Biegelman, L. Tetrahedron Lett. 1997, 38, 1669-1672.

(16) Matulic-Adamic, J.; Beigelman, L. Tetrahedron Lett. 1997, 38, 203-206.

(17) Hirao, I.; Fujiwara, T.; Kimoto, M.; Yokoyama, S. Bioorg. Med. Chem. Lett. 2004, 14, 4887-4890.

(18) Kimoto, M.; Endo, M.; Mitsui, T.; Okuni, T.; Hirao, I.; Yokoyama, S. Chem. Biol. 2004, 11, 47-55.

(19) Hirao, I.; Ohtsuki, T.; Fujiwara, T.; Mitsui, T.; Yokogawa, T.; Okuni, T.; Nakayama, H.; Takio, K.; Yabuki, T.; Kigawa, T.; Kodama, K.; Yokogawa, T.; Nishikawa, K.; Yokoyama, S. Nat. Biotechnol. 2002, 20, 177-182.

(20) Alderweireldt, F. C.; Vrijens, I.; Esmans, E. L.; Wotring, L. L.; Townsend, L. B.; Balzarini, J.; De Clercq, E. Nucleosides Nucleotides 1989, 8, 891-894.

(21) (a) Belmans, M.; Vrijens, I.; Esmans, E.; Domisse, R.; Lepoivre, J.; Alderweireldt, F.; Townsend, L. B.; Wotring, L.; De Clercq, E. Nucleosides Nucleotides 1986, 5, 441-455. (b) De Vos, E.; Esmans, E.; Lepoivre, J.; Alderweireldt, F.; Domisse, R.; Francois, P.; Touillaux, R.; Balzarini, J.; De Clercq, E. Nucleosides Nucleotides 1991, 10, 1573-1598. (c) Ijima, T.; Furukawa, H. J. Heterocycl. Chem. 1988, 25, 503-507. (d) Stuiver, L.; Pankiewicz, K.; Patterson, S.; Otto, M. J.; Watanabe, K. A. WO 2002048165 A2 (2001).

(22) Wang, X.; Rabat, P.; O'Shea, P.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett. 2000, 41, 4335-4338.

(23) (a) Dondoni, A.; Scherrmann, M.-C. J. Org. Chem. 1994, 59, 6404-6412. (b) Gudmundsson, K. S.; Drach, J. D.; Townsend, L. B. Tetrahedron Lett. 1996, 37, 2365-2368.

(24) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125 - 146.

(25) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158-1174.

(27) Čapek, P.; Pohl, R.; Hocek, M. J. Org. Chem. 2005, 70, 8001-8008.

(28) van Wijk, J., Haasnoot, C. A. G., de Leeuw, F. A. A. M., Huckriede, B. D., Westra Hoekzema, A., Altona, C. PSEUROT 6.2 1993, PSEUROT 6.3 1999; Leiden Institute of Chemistry, Leiden University.

(29) Padrta, P.; Sklenář, V. J. Biomol. NMR 2002, 24, 339-349.

(30) Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. *J. Appl. Crystallogr.* **1994**, *27*, 435–435.

(31) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487–1487.